Janus particles offer new physics, new technology

Mar 13, 2006
Steve Granick
Steve Granick, a professor of materials science and engineering, of chemistry and of physics, has modified the surface of colloidal particles into a Janus chemical compound. "We can measure the rotational dynamics of single colloidal particles in suspension as well as at interfaces,” Granick said. “We can also take advantage of the particles’ two very dissimilar sides to create families of microsensors.” University of Illinois Photo

In Roman mythology, Janus was the god of change and transition, often portrayed with two faces gazing in opposite directions. At the University of Illinois at Urbana-Champaign, Janus particles are providing insight into the movement of molecules, and serving as the basis for new materials and sensors.

“By modifying the surface of colloidal particles into a Janus chemical compound, we can measure the rotational dynamics of single colloidal particles in suspension as well as at interfaces,” said Steve Granick, a professor of materials science and engineering, chemistry and physics. “We can also take advantage of the particles’ two very dissimilar sides to create families of microsensors.”

Using a metal-deposition technique, Granick and his research team – graduate students Liang Hong and Steven Anthony, and postdoctoral research associate Huilin Tu – make particles half-covered by metal, and generate geometrically symmetric but chemically asymmetric materials. Trapped inside the micron-size particles are fluorescent dyes, which can only be seen through the uncoated hemisphere, not through the metal-coated hemisphere.

“Because these colloidal particles are rotating, they twinkle as they move back and forth, ‘swimming’ by Brownian motion,” said Granick, who is also a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology. “By carefully monitoring the motion of the particles, we can now ask questions about that motion that were not possible before.”

Individual particles can be tied together like strings of pearls. Using precision imaging and tracking techniques, the researchers can measure the movement as the strings tumble around. The particles can also be used as microprobes and microrheometers.

“We are continuing to explore the chemical modification of the metal surface to form new colloid-based materials,” said Granick, who will describe his team’s work at the March Meeting of the American Physical Society, to be held at the Baltimore Convention Center, March 13-17. “We are also investigating the use of electrical fields and magnetic fields to manipulate the particles.”

Source: University of Illinois at Urbana-Champaign

Explore further: Flatland, we hardly knew ye: Unique 1-D metasurface acts as polarized beam splitter, allows novel form of holography

add to favorites email to friend print save as pdf

Related Stories

Russia turns back clocks to permanent Winter Time

11 hours ago

Russia on Sunday is set to turn back its clocks to winter time permanently in a move backed by President Vladimir Putin, reversing a three-year experiment with non-stop summer time that proved highly unpopular.

UN climate talks shuffle to a close in Bonn

11 hours ago

Concern was high at a perceived lack of urgency as UN climate negotiations shuffled towards a close in Bonn on Saturday with just 14 months left to finalise a new, global pact.

Microsoft beefs up security protection in Windows 10

15 hours ago

What Microsoft users in business care deeply about—-a system architecture that supports efforts to get their work done efficiently; a work-centric menu to quickly access projects rather than weather readings ...

Comet Siding Spring whizzes past Mars (Update)

Oct 19, 2014

A comet the size of a small mountain and about as solid as a pile of talcum powder whizzed past Mars on Sunday, dazzling space enthusiasts with the once-in-a-million-years encounter.

Recommended for you

Three-dimensional metamaterials with a natural bent

Oct 24, 2014

Metamaterials, a hot area of research today, are artificial materials engineered with resonant elements to display properties that are not found in natural materials. By organizing materials in a specific way, scientists ...

Scientists develop compact medical imaging device

Oct 23, 2014

Scientists at the MIRA research institute, in collaboration with various companies, have developed a prototype of a handy device that combines echoscopy (ultrasound) with photoacoustics. Combining these two ...

User comments : 0