Discovery of Fruit Fly Model Could Help Stroke and Transplant Patients

Dec 05, 2007
Fruit Fly
Fruit Fly. Credit: UCSD

Biologists have discovered that the common fruit fly is an ideal laboratory model for reperfusion injury—a physiological condition that occurs when an organ is starved of oxygen, then exposed to oxygen again, and which can lead to death among stroke victims and during organ transplants.

Researchers at UC San Diego and the University of Nevada at Las Vegas, who report their discovery in the December 5 issue of the journal Public Library of Science One, said that because reperfusion injury can be induced in fruit flies, scientists will now have a convenient, inexpensive and well-characterized animal model for this physiological condition.

“This is the first physiological demonstration of reperfusion damage in an invertebrate,” said Pablo Schilman, a lecturer in UCSD’s Division of Biological Sciences who made the discovery with John Lighton, an adjunct professor of biological sciences at UNLV.

“With this new model, researchers can explore the mechanisms of reperfusion injury with a classic animal model that’s much cheaper and easier to use than vertebrates such as mammals,” said Lighton, president of Sable Systems International, a Nevada based company that manufactures precision respirometry systems, who headed the study. “Use of this method creates a window into the cells' mitochondria. Using Drosophila as a model may mean faster progress in mitigating the human toll of reperfusion injury, which we still don’t fully understand. And what we don’t fully understand, we can’t treat effectively.”

The study, which was funded by Sable Systems International’s Basic Research Initiative and took place in Sable Systems’ respirometry laboratory in Las Vegas, started out with the first detailed metabolic examination of the fruit-fly’s ability to survive a complete lack of oxygen for an hour or more.

“By accident,” said Lighton, “we discovered that exposing fruit-flies to one or more brief bursts of oxygen while they were otherwise oxygen-starved, injured their respiratory systems irreversibly—classic reperfusion injury.”

Lighton and Schilman tracked damage to the flies’ respiratory systems by measuring the water vapor and carbon dioxide lost by individual flies weighing less than a thousandth of a gram. The carbon dioxide output provided an index of mitochondrial activity, while respiratory water loss tracked the functional state of the fly's neuromuscular system.

“We now have ways of measuring reperfusion injury in Drosophila,” said Lighton. “So, it's possible both to improve our understanding of the process and to test strategies for mitigating it using an animal most people don't have an emotional reaction to, other than a desire to swat it. We hope that biomedical researchers will pick up on this opportunity.”

The journal article is available online at: www.plosone.org/doi/pone.0001267

Source: By Kim McDonald, UCSD

Explore further: First detailed microscopy evidence of bacteria at the lower size limit of life

add to favorites email to friend print save as pdf

Related Stories

Study shows troubling rise in use of animals in experiments

5 hours ago

Despite industry claims of reduced animal use as well as federal laws and policies aimed at reducing the use of animals, the number of animals used in leading U.S. laboratories increased a staggering 73 percent from 1997 ...

NY surveying banks on cyber security defenses

7 hours ago

(AP)—New York financial regulators are considering tougher cyber security requirements for banks to mandate more complex computer sign-ins and certifications from the contractors of their cyber defenses, the state's top ...

Life-saving train design is rarely used

8 hours ago

(AP)—Nearly a decade ago, the U.S. secretary of transportation stood at the site of a horrendous commuter train crash near downtown Los Angeles and called for the adoption of a new train car design that ...

Climate change may flatten famed surfing waves

8 hours ago

On a summer day in 1885, three Hawaiian princes surfed at the mouth of the San Lorenzo River on crudely constructed boards made from coastal redwoods, bringing the sport to the North American mainland.

Recommended for you

A molecular compass for bird navigation

Feb 27, 2015

Each year, the Arctic Tern travels over 40,000 miles, migrating nearly from pole to pole and back again. Other birds make similar (though shorter) journeys in search of warmer climes. How do these birds manage ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.