Human embryonic stem cell -- derived bone tissue closes massive skull injury

Dec 02, 2007

There are mice in Baltimore whose skulls were made whole again by bone tissue grown from human embryonic stem cells (hESCs).

Healing critical-size defects (defects that would not otherwise heal on their own) in intramembraneous bone, the flat bone type that forms the skull, is a vivid demonstration of new techniques devised by researchers at John Hopkins University to use hESCs for tissue regeneration.

Using mesenchymal precursor cells isolated from hESCs, the Hopkins team steered them into bone regeneration by using “scaffolds,” tiny, three-dimensional platforms made from biomaterials.

Physical context, it turns out, is a powerful influence on cell fate. Nathaniel S. Hwang, Jennifer Elisseeff, and colleagues at Hopkins demonstrated that by changing the scaffold materials, they could shift mesenchymal precursor cells into either of the body’s osteogenic pathways: intramembraneous, which makes skull, jaw, and clavicle bone; or endochondral, which builds the “long” bones and involves initial formation of cartilage, which is then transformed into bone by mineralization.

Mesenchymal precursor cells grown on an all-polymer, biodegradable scaffold followed the endochondral lineage. Those grown on a composite scaffold made of biodegradable polymers and a hard, gritty mineral called hydroxyapatite went to the intramembraneous side.

Biomaterial scaffolds provide a three-dimensional framework on which cells can proliferate and differentiate, secrete extracellular matrix, and form functional tissues, says Hwang. In addition, their known composition allowed the researchers to characterize the extracellular microenvironmental cues that drive the lineage specification.

The promise of pluripotent embryonic stem cells for regenerative medicine hangs on the development of such control techniques. Left to themselves, hESCs in culture differentiate wildly, forming a highly mixed population of cell types, which is of little use for cell-based therapy or for studying particular lineages.

Conventional hESC differentiation protocols rely on growth factors, co-culture, or genetic manipulation, say the researchers. The scaffolds offer a much more efficient method.

As a proof of principle, Hwang and colleagues seeded hESC-derived mesenchymal cells onto hydroxyapatite-composite scaffolds and used the resulting intramembraneous bone cells to successfully heal large skull defects in mice. The Hopkins researchers believe that this is the first study to demonstrate a potential application of hESC-derived mesenchymal cells in a musculoskeletal tissue regeneration application.

Source: American Society for Cell Biology

Explore further: Parasite provides clues to evolution of plant diseases

add to favorites email to friend print save as pdf

Related Stories

Stem-cell disruption induces skull deformity, study shows

May 25, 2010

University of Rochester Medical Center scientists discovered a defect in cellular pathways that provides a new explanation for the earliest stages of abnormal skull development in newborns, known as craniosynostosis.

Recommended for you

World's wildlife critical to the economies of nations

7 minutes ago

Wildlife is critical to the economies of nations. New Zealand's wildlife – whales, dolphins, red deer, thar, albatross, kiwi, tuatara, fish and kauri – attract tourists. And the tourists who come to see ...

Modern methods lead the way toward a rhino rebound

17 minutes ago

Cutting-edge technology and techniques have become essential tools in the effort to save rhinos. Micro chips, translocation and consumer campaigns are helping shift the balance against record-setting poaching ...

Tracking bald eagles in coastal North Carolina

17 minutes ago

Few animals capture the public imagination like the bald eagle. But despite their status as a national emblem, we still have a lot to learn about their behavior in the wild. Now NC State researchers are part ...

The water trading strategies of plants

1 hour ago

Plants trade water for carbon – every litre of water that they extract from the soil allows them to take up a few more grams of carbon from the atmosphere to use in growth. A new global study, led by Australian ...

Chinese ivory traders find haven online

3 hours ago

China's booming e-commerce websites have carried thousands of advertisements for illegal wildlife products including ivory, rhino horn and tiger bone, a wildlife trade monitoring network said on Tuesday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.