Fast-Talking NASA Spacecraft Starts Final Approach to Mars

Mar 08, 2006
Artist's concept of Mar Reconnaissance Orbiter near Mars
Artist's concept of Mar Reconnaissance Orbiter near Mars. Image credit: NASA/JPL

NASA's Mars Reconnaissance Orbiter has begun its final approach to the red planet after activating a sequence of commands designed to get the spacecraft successfully into orbit.

The sequence began Tuesday and will culminate with firing the craft's main thrusters for about 27 minutes on Friday -- a foot on the brakes to reduce velocity by about 20 percent as the spacecraft swings around Mars at about 5,000 meters per second (about 11,000 miles per hour). Mission controllers at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and Lockheed Martin Space Systems, Denver, are monitoring the events closely.

"We have been preparing for years for the critical events the spacecraft must execute on Friday," said JPL's Jim Graf, project manager. "By all indications, we're in great shape to succeed, but Mars has taught us never to get overconfident. Two of the last four orbiters NASA sent to Mars did not survive final approach."

Mars Reconnaissance Orbiter will build upon discoveries by five successful robots currently active at Mars: NASA rovers Spirit and Opportunity, NASA orbiters Mars Global Surveyor and Mars Odyssey, and the European Space Agency's Mars Express orbiter. It will examine Mars' surface, atmosphere and underground layers in great detail from a low orbit. It will aid future missions by scouting possible landing sites and relaying communications. It will send home up to 10 times as much data per minute as any previous Mars mission.

First, it must get into orbit. The necessary thruster burn will begin shortly after 1:24 p.m. Pacific Time on Friday. Engineers designed the burn to slow the spacecraft just enough for Mars' gravity to capture it into a very elongated elliptical orbit. A half-year period of more than 500 carefully calculated dips into Mars' atmosphere -- a process called aerobraking -- will use friction with the atmosphere to gradually shrink the orbit to the size and nearly-circular shape chosen for most advantageous use of the six onboard science instruments.

"Our primary science phase won't begin until November, but we'll actually be studying the changeable structure of Mars' atmosphere by sensing the density of the atmosphere at different altitudes each time we fly through it during aerobraking," said JPL's Dr. Richard Zurek, project scientist for the mission.

Source: NASA

Explore further: "CanJam" joint among first to fly on NASA, Virgin Galactic flight

add to favorites email to friend print save as pdf

Related Stories

NASA Mars spacecraft prepare for close comet flyby

Jul 26, 2014

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

How do we terraform Venus?

Jul 25, 2014

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

NASA radio delivered for Europe's 2016 Mars orbiter

Jul 08, 2014

(Phys.org) —The first of two NASA Electra radios that will fly aboard the European Space Agency's next mission to Mars has been delivered for installation onto the ESA ExoMars Trace Gas Orbiter (TGO).

Recommended for you

Tidal forces gave moon its shape, according to new analysis

11 hours ago

The shape of the moon deviates from a simple sphere in ways that scientists have struggled to explain. A new study by researchers at UC Santa Cruz shows that most of the moon's overall shape can be explained by taking into ...

Evidence of a local hot bubble carved by a supernova

13 hours ago

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, ...

User comments : 0