Experimental atomic clock uses ytterbium 'pancakes'

Mar 06, 2006
Experimental atomic clock uses ytterbium 'pancakes'
NIST's new optical atomic clock uses two magnetic coils (red rings) and an optical lattice (red laser beam), as well as intersecting violet lasers to cool ytterbium atoms, slowing their motion. Illustration credit: NIST

Scientists at the National Institute of Standards and Technology working with Russian colleagues have significantly improved the design of optical atomic clocks that hold thousands of atoms in a lattice made of intersecting laser beams.

The design, in which ytterbium atoms oscillate or "tick" at optical frequencies, has the potential to be more stable and accurate than today's best time standards, which are based on microwaves at much lower frequencies. More accurate time standards could improve communications, enhance navigation systems, and enable new tests of physical theories, among other applications.

Experimental atomic clock uses ytterbium 'pancakes'
The lattice of laser beams traps small numbers of ytterbium atoms in pancake-shaped "wells." A yellow laser excites the atoms so that they switch between lower (blue) and higher (yellow) energy levels. Illustration credit: NIST

Described in two papers in the March 3 issue of Physical Review Letters,* the heart of the clock consists of about 1,000 pancake-shaped wells made of laser light and arranged in a single line, each containing about 10 atoms of the heavy metal ytterbium. The lattice design results in fewer systematic errors than optical atomic clocks using moving balls of cold atoms, and also offers advantages in parallel processing over other approaches using single charged atoms (ions). The optical lattice, created by an intense near-visible laser beam, is loaded by first slowing down the atoms with violet laser light and then using green laser light to further cool the atoms so that they can be captured. Scientists detect the atoms' "ticks" (518 quadrillion per second) by bathing them in yellow light at slightly different frequencies until they find the exact "resonant" frequency (or color) that the atoms absorb best.

Previous lattice-based clocks have used atoms with odd-numbered atomic masses, which have a nuclear magnetic field that causes some additional complications. The new clock uses atoms with even-numbered atomic masses that have no net nuclear magnetic field but have been difficult to use in atomic clocks until now. The researchers found they could apply a small external magnetic field combined with yellow laser light to induce an otherwise "forbidden" oscillation between two energy levels in the atoms. The team reported an extremely precise resonance frequency with a strong signal that demonstrates the clock's potential for very high stability. The new approach is also applicable to other atoms with even-numbered atomic masses, such as strontium and calcium, which are under study at NIST and other research laboratories around the world.

* Z.W. Barber, C.W. Hoyt, C.W. Oates, L. Hollberg, A.V. Taichenachev and V. I. Yudin. 2006. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice. Physical Review Letters. March 3.

** A.V. Taichenachev, V.I. Yudin, C.W. Oates, C.W. Hoyt, Z.W. Barber and L. Hollberg. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. Physical Review Letters. March 3.

Source: NIST

Explore further: Generating broadband terahertz radiation from a microplasma in air

Related Stories

About time: New record for atomic clock accuracy

Apr 21, 2015

In another advance at the far frontiers of timekeeping by National Institute of Standards and Technology researchers, the latest modification of a record-setting strontium atomic clock has achieved precision ...

Recommended for you

Researchers build real-time tunable plasmon laser

Apr 24, 2015

(Phys.org)—A combined team of researchers from Northwestern and Duke Universities has succeeded in building a plasmon laser that is tunable in real-time. In their paper published in the journal Nature Co ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.