Growth front of gallium-arsenide crystals determined by synchrotron X-rays

Feb 24, 2006
SPring-8
SPring-8, the largest third-generation (8 GeV) synchrotron radiation facility in the world, provides the most powerful synchrotron radiation currently available.

Japan Atomic Energy Agency (JAEA) scientists have developed a novel technique to determine atomic arrangements and atomic species on semiconductor surfaces during growth using x-rays from SPring-8, a synchrotron radiation facility.

"This technique," says Dr. Masamitu Takahasi of Quantum Beam Science Directorate, "may help improve semiconductor devices used in advanced communication systems, such as mobile phones, optical networking, wireless LAN, and car navigation systems, and may even accelerate the development of new electronic devices."

Dr. Takahasi and his coworkers have integrated a crystal growth chamber with an x-ray diffractometer at SPring-8 beamline, BL11XU. Then they used this setup to observe the surface of gallium arsenide under growth conditions. Using multi-energy x-rays, they identified both the atomic species and the atomic arrangement in the surface region.

Unlike conventional diffraction techniques, which observe "monochromatic" atomic arrangements, this technique can be compared to "color" imaging of the surface structure. In their most recent work, they experimentally demonstrated that a surface structure called c(4x4), which is observed under certain growth conditions, has dimmers that consist of gallium and arsenic atoms in the topmost layer.

This work was published in Physical Review Letters, Vol. 96, No. 5 on February 8, 2006.

Article: "Element-Specific Surface X-Ray Diffraction Study of GaAs(001)-c(4×4)" Masamitu Takahasi and Jun'ichiro Mizuki Phys. Rev. Lett. 96, 055506 (2006), online published 8 February 2006

Source: Japan Synchrotron Radiation Research Institute

Explore further: Experiment with speeding ions verifies relativistic time dilation to new level of precision

add to favorites email to friend print save as pdf

Related Stories

Aligned carbon nanotube / graphene sandwiches

Sep 12, 2014

By in situ nitrogen doping and structural hybridization of carbon nanotubes (CNTs) and graphene via a two-step chemical vapor deposition (CVD), scientists have fabricated nitrogen-doped aligned carbon nanotu ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

The perfect atom sandwich requires an extra layer

Aug 05, 2014

(Phys.org) —Like the perfect sandwich, a perfectly engineered thin film for electronics requires not only the right ingredients, but also just the right thickness of each ingredient in the desired order, ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Recommended for you

How Paramecium protozoa claw their way to the top

19 hours ago

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

User comments : 0