Modeling pathogen responses

Oct 12, 2007

The search for a vaccination against HIV has been in progress since 1984, with very little success. Traditional methods used for identifying potential cellular targets can be very costly and time-consuming. The key to creating a vaccination lies in knowing which parts of the pathogen to target with which antibodies.

A new study by David Heckerman and colleagues from Massachusetts General Hospital, publishing on October 12, 2007, in PLoS Computational Biology, has come up with a way to match pathogens to their antibodies.

At the core of the human immune response is the train-to-kill mechanism in which specialized immune cells are sensitized to recognize small peptides from foreign pathogens (e.g., HIV). Following this sensitization, these cells are then activated to kill cells that display this same peptide. However, for sensitization and killing to occur, the pathogen peptide must be “paired up” with one of the infected person’s other specialized immune molecules—an HLA (human leukocyte antigen) molecule. The way in which pathogen peptides interact with these HLA molecules defines if and how an immune response will be generated.

Heckerman’s model uses ELISpot assays to identify HLA-restricted epitopes, and which HLA alleles are responsible for which reactions towards which pathogens. The data generated about the immune response to pathogens fills in missing information from previous studies, and can be used to solve a variety of similar problems. The model was applied to data from donors with HIV, and made 12 correct predictions out of 16. This study, says David Heckerman, has “significant implications for the understanding of…vaccine development”. The statistical approach is unusual in the study of HLA molecules, and could lead the way to developing an HIV vaccine.

Source: Public Library of Science

Explore further: Living in the genetic comfort zone

add to favorites email to friend print save as pdf

Related Stories

Micro-5: Gut reactions in space

13 hours ago

Our guts literally teem with beneficial bacteria. But not all bacteria are harmless. Disease-causing bacteria, known as pathogens, can infect our intestines, causing illness or even death. Bacterial pathogens ...

TLR9: Two rings to bind them?

Feb 09, 2015

University of Tokyo researchers have elucidated how Toll-like receptor 9 (TLR9) binds to pathogen DNA, activating the innate immune system. This discovery is vital for the design of new antiviral, antibacterial, ...

Lighting up a new path for novel synthetic polio vaccine

Feb 13, 2015

Scientists from the UK and US are using technology that helped in the design of a new synthetic vaccine to combat the foot and mouth disease virus (FMDV) to now target the virus that causes polio. The synthetic ...

Recommended for you

Living in the genetic comfort zone

1 hour ago

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external ...

Cats put sight over smell in finding food

3 hours ago

Cats may prefer to use their eyes rather than follow their nose when it comes to finding the location of food, according to new research by leading animal behaviourists.

Feds spot third baby orca born recently to imperiled pods

4 hours ago

(AP)—U.S. scientists following endangered killer whales from a research vessel have spotted a baby orca off the coast of Washington state, the third birth documented this winter but still leaving the population ...

Malaria transmission linked to mosquitoes' sexual biology

5 hours ago

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.