Scientist uses dragonflies to better understand flight

Feb 20, 2006
Scientist uses dragonflies to better understand flight
Z. Jane Wang talks about her dragonfly research, which found that the slender, elegant insect uses a lot of aerodynamic drag to carry its weight. Kevin Stearns/University Photography

If mastering flight is your goal, you can't do better than to emulate a dragonfly. With four wings instead of the standard two and an unusual pitching stroke that allows the bug to hover and even shift into reverse, the slender, elegant insect is a marvel of engineering.

Z. Jane Wang, professor of theoretical and applied mechanics at Cornell University, presented her research on flying systems and fluid dynamics yesterday at the annual meeting of the American Association for the Advancement of Science. In a seminar "Falling Paper, Dragonfly Flight and Making a Virtual Insect," she said the best way to learn about flight is by first looking at what happens naturally.

Look at how such thin structures as falling paper move through a fluid environment like air, she said, and then examine how insects use their wings to manipulate that environment and stay aloft.

"The major question I focus on is the question of efficiency," Wang said in an interview. "It's the long-standing question: Of birds and planes, which is better? And if we think planes are better -- why?"

Conventional wisdom holds that airplanes (airfoils) are more efficient because they travel from point to point with no wasted up-and-down motion. "But there are infinitely many ways you can go up and down," said Wang. "Of all these paths, are any better than a straight line? Some are -- that's what I found."

The insight came from dragonflies.

"Dragonflies have a very odd stroke. It's an up-and-down stroke instead of a back-and-forth stroke," she said. "Dragonflies are one of the most maneuverable insects, so if they're doing that they're probably doing it for a reason. But what's strange about this is the fact that they're actually pushing down first in the lift.

"An airfoil uses aerodynamic lift to carry its weight. But the dragonfly uses a lot of aerodynamic drag to carry its weight. That is weird, because with airplanes you always think about minimizing drag. You never think about using drag."

The next question, she said, is whether engineers can use these ideas to build a flapping machine as efficient as a fixed-wing aircraft.

Questions of size and feasibility remain. "To hover well or to fly for a long time is hard, especially at slow speeds," she said. "Power is limited. So finding these efficient motions is very important."

Still, Wang's work moves researchers a step closer to building such a machine.

"I want to build insects on a computer as a way of learning why almost all things that move in fluid use a flapping motion," said Wang. "Whether it's a fish which flips its fins or a bird, they're actually using the same principle.

"The way paper or leaves fall, and how insects fly, may give us some ideas about why animals use these methods at all," she said.

Source: Cornell University

Explore further: No silver bullet: Study identifies risk factors of youth charged with murder

add to favorites email to friend print save as pdf

Related Stories

Report: Better shields needed for private tax data

40 minutes ago

Federal investigators say the IRS and the states should improve how they protect the security of confidential tax information of people getting benefits under the 2010 health care law.

Coal-rich Poland ready to block EU climate deal

44 minutes ago

European Union leaders meeting in Brussels to set their new greenhouse gas emissions plan are facing staunch opposition from coal-reliant Poland and other East European countries who say their economies would ...

Some online shoppers pay more than others, study shows

1 hour ago

Internet users regularly receive all kinds of personalized content, from Google search results to product recommendations on Amazon. This is thanks to the complex algorithms that produce results based on users' profiles and ...

Researchers create designer 'barrel' proteins

1 hour ago

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

Recommended for you

World population likely to peak by 2070

6 hours ago

World population will likely peak at around 9.4 billion around 2070 and then decline to around 9 billion by 2100, according to new population projections from IIASA researchers, published in a new book, World Population and ...

Bullying in schools is still prevalent, national report says

7 hours ago

Despite a dramatic increase in public awareness and anti-bullying legislation nationwide, the prevalence of bullying is still one of the most pressing issues facing our nation's youth, according to a report by researchers ...

User comments : 0