Renesas Develops Massively Parallel Processor Based on Matrix Architecture

Feb 09, 2006
Renesas Develops Massively Parallel Processor Based on Matrix Architecture
Chip micrograph of Matrix Architecture Processor

Renesas Technology Corp. today announced the development of a massively parallel processor based on a matrix architecture suitable for image and audio multimedia data processing.

This innovatively configured processor is a massively parallel programmable device featuring tight coupling of 2,048 processing elements and 1Mbit SRAM, and has been confirmed to achieve 40 GOPS (giga operations per second) performance at a 200 MHz clock frequency.

Renesas Technology researchers unveiled details at the 2006 IEEE International Solid-State Circuits Conference (ISSCC) being held in San Francisco from February 5.

The image and audio multimedia data processing capability is essential for digital home appliances and other electronics, and involves a combination of complex operations such as fast Fourier transform, convolution, and sum of absolute difference operations. Up to now, processing of these operations has generally used hard-wired logic circuits or a DSP (digital signal processor) specialized for digital signal processing. However, recent dramatic advances in multimedia applications such as the rapid increase in pixel counts in image applications have increased demands for major improvements in multimedia data processing performance. At the same time, there is a growing demand for such processing to be implemented by means of programmable devices in order to simplify support for various multimedia data standards.

One way of improving processing performance is to increase the operating frequency through the use of finer semiconductor processes. However, it will be difficult to continue to gain major improvements in performance while maintaining lower power consumption, and to achieve the required levels of performance with conventional DSP and similar architectures. Meanwhile, a coarse-grained MIMD (multiple instruction multiple data) processor has been announced as an architecture that increases processing performance, but this also has issues with reducing power consumption.

To solve these issues, Renesas Technology has developed a matrix type processor based on a different memory technology from that of a DSP or MIMD type processor.

This new processor is a fine-grained SIMD (single instruction multiple data) type massively parallel programmable device, featuring the following structural characteristics.

1. Basic configuration : 2-bit processing elements (PE) and 512-bit SRAM assigned as data registers
2. 2,048 PEs and a total of 1 Mbit SRAM, together with tight coupling between Pes .

The key to the increased performance of this processor lies in how efficiently the individual processing elements are operated. Also, the layout and connection of the processing elements and data registers are important factors in achieving reductions in area and power consumption.

A prototype processor using the new technology was implemented in 90 nm CMOS with a core area of 3.1 mm2, and achieved processing performance of 40 GOPS at a 200 MHz clock frequency and 250 mW power dissipation. These metrics show approximately 70 and 13 times better energy efficiency in terms of unit area ratio and unit power ratio, respectively, compared to a conventional in-house DSP.

Source: Renesas Technology

Explore further: London mayor expected to say city will rock 5G by 2020

add to favorites email to friend print save as pdf

Related Stories

Researchers study bamboo for engineered building material

Jul 23, 2014

Bamboo construction has traditionally been rather straightforward: Entire stalks are used to create latticed edifices, or woven in strips to form wall-sized screens. The effect can be stunning, and also practical ...

Designing exascale computers

Jul 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

Austria's new green super computer

Jul 15, 2014

Several universities have come together to construct Austria's most powerful mainframe computer. Phase VSC-3 (Vienna Scientific Cluster 3) offers not only impressive computing power, but also serious energy ...

NVIDIA helps spark 64-bit ARM systems for HPC

Jun 23, 2014

(Phys.org) —NVIDIA could not have chosen a better venue for a chosen target: The International Supercomputing Conference, running to June-26 in Leipzig, Germany, is where NVIDIA took center stage, to demonstrate ...

Recommended for you

London mayor expected to say city will rock 5G by 2020

1 hour ago

London mayor Boris Johnson this week will pledge to bring 5G to London in the next six years, reported The Telegraph on Monday. The pledge is part of a more extensive plan for London's infrastructure between ...

T-Mobile deal helps Rhapsody hit 2M paying subs

3 hours ago

(AP)—Rhapsody International Inc. said Tuesday its partnership with T-Mobile US Inc. has helped boost its number of paying subscribers to more than 2 million, up from 1.7 million in April.

Airbnb woos business travelers

3 hours ago

Airbnb on Monday set out to woo business travelers to its service that lets people turn unused rooms in homes into de facto hotel space.

Google searches hold key to future market crashes

14 hours ago

A team of researchers from Warwick Business School and Boston University have developed a method to automatically identify topics that people search for on Google before subsequent stock market falls.

Lenovo's smart glasses prototype has battery at neck

16 hours ago

China's PC giant Lenovo last week offered a peek at its Google Glass-competing smart glass prototype, further details of which are to be announced in October. Lenovo's glasses prototype is not an extreme ...

User comments : 0