DNA replication behavior in complex organisms may foreshadow leaps in genomic discoveries

Aug 15, 2007

For the first time, findings by scientists at the Genome Institute of Singapore (GIS) may be paving the way for more efficient analyses and tests related to the replication of cells, and ultimately, to the better understanding of human biology, such as in stem cell research.

Faithful duplication of the genome (the hereditary information that is encoded in genetic materials known as DNA) ensures that daughter cells inherit a complete set of genetic materials identical to parent cells. This duplication occurs in the section of the cell cycle known as the S-phase. Extensive research on the budding yeast, an organism often used in modern cell biology research, had revealed that the replication process is initiated at hundreds of origins in the S-phase.

However, because previous studies focused on the replication timing and initiation sites, but not on the efficiency, it was thought that replication efficiency decreased as the S-phase progressed.

In a paper published in PLoS ONE in August 2007, GIS scientists described how they were able to determine the replication timing and efficiency at the various loci in the genome. Specifically, replication efficiency was found to be low at the beginning of the S-phase, and increased at the later stage of this phase.

GIS Group Leader and the corresponding author of the publication, Dr Liu Jianhua, said, “Our evidence strongly supports the stochastic model for the regulation of DNA replication in high eukaryotes (organisms whose cells are organised into complex structures by internal membranes and a cytoskeleton) such as humans. We have shown that replication efficiency can be directly determined on a genomic scale. More significantly, our study provides for a novel methodology for the analysis of replication efficiencies at a genomic level in other species, and this is a very important step for the advancement of research in fundamental biology.”

Source: Public Library of Science

Explore further: How to reset a diseased cell

Related Stories

Nepal quake could have been much worse: Here's why

2 hours ago

The structural engineer strides through Kathmandu's old city, past buildings reduced to rubble, buildings whose facades are cracked in dozens of places, like the fractured shell of a hardboiled egg. But it's ...

Pulsar with widest orbit ever detected

2 hours ago

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's (NSF) Robert C. Byrd Green Bank Telescope (GBT). ...

Recommended for you

Study shows where damaged DNA goes for repair

2 hours ago

A Tufts University study sheds new light on the process by which DNA repair occurs within the cell. In research published in the May 15 edition of the journal Genes & Development and available May 4 onli ...

How to reset a diseased cell

May 01, 2015

In proof-of-concept experiments, researchers at University of California, San Diego School of Medicine demonstrate the ability to tune medically relevant cell behaviors by manipulating a key hub in cell communication networks. ...

Highly efficient CRISPR knock-in in mouse

May 01, 2015

Genome editing using CRISPR/Cas system has enabled direct modification of the mouse genome in fertilized mouse eggs, leading to rapid, convenient, and efficient one-step production of knockout mice without ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.