The inside dope: new technique may speed the development of molecular electronics

Jul 26, 2007

Weizmann Institute scientists have developed a new technique that could lead to the development of inexpensive, biodegradable and versatile electronic components, which are made of single layers of organic (carbon-based) molecules.

Often, things can be improved by a little 'contamination.' Steel, for example is iron with a bit of carbon mixed in.

To produce materials for modern electronics, small amounts of impurities are introduced into silicon – a process called doping. It is these impurities that enable electricity to flow through the semiconductor and allow designers to control the electronic properties of the material.

Scientists at the Weizmann Institute of Science, together with colleagues from the US, recently succeeded in being the first to implement doping in the field of molecular electronics – the development of electronic components made of single layers of organic (carbon-based) molecules.

Such components might be inexpensive, biodegradable, versatile and easy to manipulate. The main problem with molecular electronics, however, is that the organic materials must first be made sufficiently pure and then, ways must be found to successfully dope these somewhat delicate systems.

This is what Prof. David Cahen and postdoctoral fellow Dr. Oliver Seitz of the Weizmann Institute’s Material and Interfaces Department, together with Drs. Ayelet Vilan and Hagai Cohen from the Chemical Research Support Unit and Prof. Antoine Kahn from Princeton University did. They showed that such 'contamination' is indeed possible, after they succeeded in purifying the molecular layer to such an extent that the remaining impurities did not affect the system’s electrical behavior.

The scientists doped the 'clean' monolayers by irradiating the surface with UV light or weak electron beams, changing chemical bonds between the carbon atoms that make up the molecular layer. These bonds ultimately influenced electronic transport through the molecules.

This achievement was recently described in the Journal of the American Chemical Society (JACS). The researchers foresee that this method may enable scientists and electronics engineers to substantially broaden the use of these organic monolayers in the field of nanoelectronics. Dr. Seitz: 'If I am permitted to dream a little, it could be that this method will allow us to create types of electronics that are different, and maybe even more environmentally friendly, than the standard ones that are available today.'

Source: Weizmann Institute of Science

Explore further: Base-pairing protects DNA from UV damage

add to favorites email to friend print save as pdf

Related Stories

Team improves solar-cell efficiency

5 hours ago

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Doped graphene nanoribbons with potential

Sep 08, 2014

Graphene is a semiconductor when prepared as an ultra-narrow ribbon – although the material is actually a conductive material. Researchers from Empa and the Max Planck Institute for Polymer Research have ...

Recommended for you

A refined approach to proteins at low resolution

9 hours ago

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

11 hours ago

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

12 hours ago

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0