Steroids, not songs, spur growth of brain regions in sparrows

Jul 23, 2007

Neuroscientists are attempting to understand if structural changes in the brain are related to sensory experience or the performance of learned behavior, and now University of Washington researchers have found evidence that one species of songbird apparently has something in common with a few baseball sluggers. Both rely on steroids, birds to increase the size of song production areas of their brain and some players, apparently, to knock a fastball out of the park.

Writing last month in the Journal of Neuroscience, Eliot Brenowitz and his colleagues showed that the Gambel’s white-crowned sparrow uses testosterone, a naturally occurring steroid, to trigger the seasonal growth of these brain regions. Birds use song to attract mates and mark their territory.

Their finding is counter to some previous work with other birds and rodents that indicated environmental factors can influence brain development and create more neuronal connections.

“We would like to think that if we shape the environment we can guide the brain’s structure,” said Brenowitz, a UW professor of psychology and biology. “But the idea that experience can drive growth of the brain regions that control song behavior in birds was disproved by this study. You can change the experience and the behavior, but you don’t change the structure of the brain.”The UW scientists found that the three brain regions in white-crowned sparrows that had been deafened were just as large as those regions in normal sparrows. However, the deafened birds only sang one-eighth the number of songs that the hearing birds sang.

To show this, the researchers captured 19 adult male white-crowned sparrows during their fall migration and housed them in short-day light conditions to mimic winter for 12 weeks. Eleven of the birds then were surgically deafened. A week after the surgery, all of the birds were given testosterone implants and were shifted to long-day light conditions, similar to what they would encounter during their breeding season in Alaska.

The birds’ three song-control regions are called the HVC, RA and X. All are located in the forebrain and grow quickly and in sequence. The brains of the birds were examined after 7 and 30 days, and the volume of the song production areas did not differ between the deafened and the hearing sparrows. Even though the deafened birds sang considerably less often, there was no degradation in the structure of their songs, according to Brenowitz.

Another major finding of the study is that seasonal growth of these song production areas of the brain does not require hearing or high levels of singing. “This is surprising to a lot of people because many thought seasonal growth of song nuclei was related to the rate of singing,” he said.

While the research was conducted on birds, it also has potential long-term human applications, addressing the broad issue of environment enrichment supporting brain plasticity.

“This study suggests that playing tapes of recorded speech to try to help a person recover language after a stroke might not be productive. But perhaps we could use neutrophins, growth-inducing proteins whose synthesis by brain neurons is stimulated by testosterone. In sparrows, brain areas are directly stimulated by these hormones to grow and one day such hormones might possibly help repair brain damage caused by strokes or neurodegenerative diseases,” said Brenowitz.

Source: University of Washington

Explore further: Major turtle nesting beaches protected in 1 of the UK's far flung overseas territories

add to favorites email to friend print save as pdf

Related Stories

Warbling wrens don't just tweet, they sing duets

Nov 03, 2011

(AP) -- They may not be Sonny and Cher, but certain South American birds sing duets, taking turns as the tune goes along. "Calling it a love song is probably too strong a word," says researcher Eric S. Fortune ...

Recommended for you

'Killer sperm' prevents mating between worm species

2 hours ago

The classic definition of a biological species is the ability to breed within its group, and the inability to breed outside it. For instance, breeding a horse and a donkey may result in a live mule offspring, ...

Rare Sri Lankan leopards born in French zoo

5 hours ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Japan wraps up Pacific whale hunt

6 hours ago

Japan announced Tuesday that it had wrapped up a whale hunt in the Pacific, the second campaign since the UN's top court ordered Tokyo to halt a separate slaughter in the Antarctic.

Researchers uncover secrets of internal cell fine-tuning

6 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

User comments : 0