Sediment could be a major factor in biggest subduction zone earthquakes

Jan 30, 2006

The most powerful earthquakes – such as those that shook Indonesia in 2004, Alaska in 1964, Chile in 1960 and the Pacific Northwest in 1700 – occur in subduction zones, areas of the sea floor just offshore where two tectonic plates meet and one dives beneath the other.

But not all subduction zones are created equal, and University of Washington researchers believe they have found a key to determine which subduction zones – or which specific areas within a subduction zone – might produce the most severe shaking when they rupture.

As the subducting plate slides beneath the upper plate, stress begins to build where the plates meet and the upper plate can deform to create a large structure called a forearc basin. The basin, a sort of a bowl-shaped depression, fills with sediment from nearby rivers that empty into the ocean. Over millions of years, the sediment typically piles to great depths, from a half-mile to nearly 2 miles, and in rare cases might reach 3 miles deep, said Christopher Fuller, a University of Washington doctoral student in Earth and space sciences.

"In many of them, the sediment will stop the deformation of the upper plate," Fuller said. "The simplest way to think of it is that the increased weight of the sediment stops the deformation from occurring."

It appears the most severe subduction zone earthquakes occur in areas where such sediment-filled basins are found, but the reasons aren't exactly clear. Fuller and his colleagues conducted computer simulations of force experienced during plate subduction to determine how sediment buildup influences major earthquakes. They found that the weight of the sediment strengthens the edge of the plate directly above where the earthquakes happen. The stronger edge is deformed far less by subduction than nearby areas without such basins, he said, and that increases the likelihood that large earthquakes will occur in regions with basins.

Fuller is the lead author of a paper explaining the modeling research, published in the February edition of the journal Geology. Co-authors are Sean Willett, a UW associate professor of Earth and space sciences, and Mark Brandon, a professor of geology and geophysics at Yale University. The work was supported by grants from the National Science Foundation.

Hypotheses for why earthquakes associated with forearc basins can be so severe include:

-- Changing conditions where the plates meet, as the top part of the subducting plate meets more resistance and travels at a slower speed than the bottom part of the plate, creating a great strain in the plate. Fuller regards this as the least likely scenario.
-- Fault strengthening over time, like the seal a mayonnaise jar lid develops when it hasn't been opened for weeks. Slight movement on the fault caused by deformation within the upper plate (like tapping the jar lid) loosens the bonds and then the fault suddenly moves (like twisting the jar lid). Fuller believes this is the most likely hypothesis.
-- Fluid between the plates becomes superheated under pressure and, like water boiling in a teakettle, the fluid pushes upward and counteracts the downward pressure from the upper plate, allowing the fault to rupture.

The Cascadia subduction zone off the coasts of Washington, Oregon and northern California has forearc basins in several areas, Fuller said. As it moves to the east at 2 inches a year, the Juan de Fuca tectonic plate slides beneath the North American plate that contains the landmass of the Pacific Northwest. In the process, sediment as deep as 1½ miles is scraped off the top of the Juan de Fuca plate and is deformed into surface depressions on the North American plate, forming the basins where sediment from coastal rivers is deposited. The probability of large earthquakes is greatest in these areas.

The modeling could have implications in figuring out where, within a subduction zone such as Cascadia, great earthquakes are the most likely to occur, Fuller said. But the work is not applicable to every subduction zone because each has different characteristics. For instance, forearc basins do not play the same role in the subduction zone off the Indonesian island of Sumatra, where the massive 2004 earthquake triggered tsunamis that killed hundreds of thousands of people.

"You have to understand the nature of basins and how they work in each area before you can use them as an interpretive tool," Fuller said. "You can't just apply these correlations everywhere."

Source: University of Washington

Explore further: Second time through, Mars rover examines chosen rocks

add to favorites email to friend print save as pdf

Related Stories

Hubble reveals a super-rich galactic neighborhood

12 minutes ago

(Phys.org) —This new image from the NASA/ESA Hubble Space Telescope shows the super-rich galaxy cluster Abell 1413. Located between the constellations of Leo (The Lion) and Coma Berenices, the cluster is ...

The Rosetta lander detects organic matter

22 minutes ago

Scientists working with data sent back by the now-slumbering Philae lander have announced the discovery of organic molecules on the comet 67P/Churyumov-Gerasimenko. ...

Recommended for you

Estimating the magnetic field of an exoplanet

7 hours ago

Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they ...

Astronauts to get 'ISSpresso' coffee machine

8 hours ago

Ristretto or lungo? Not a question astronauts on the International Space Station normally have to contemplate, but that is about to change thanks to a new zero-gravity coffee machine being delivered this weekend.

It's filamentary: How galaxies evolve in the cosmic web

8 hours ago

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.