Researchers make discovery in molecular mechanics of phototropism

Jul 05, 2007

In a paper published in the Journal of Biological Chemistry, scientists at the University of Missouri-Columbia reported molecular-level discoveries about the mechanisms of phototropism, the directional growth of plants toward or away from light.

Phototropism is initiated when photoreceptors in a plant sense directional blue light. Understanding phototropism is important because it could lead to crop improvement, said Mannie Liscum, professor in the Division of Biological Sciences in MU’s College of Arts and Science and Christopher S. Bond Life Sciences Center.

“By understanding how phototropism works at a molecular level, we can work toward engineering plants that produce more biomass or have increased drought tolerance, among other things. For example, we could use this information to optimize plants’ ability to capture light for photosynthesis, which would result in more energy capture and thus growth, or potentially agronomically useful biomass,” Liscum said.

Liscum and doctoral student Ullas Pedmale studied the regulation of phototropic signaling in Arabidopsis thaliana, a weedy flowering plant commonly used as a model in laboratory studies. Focusing on non-phototropic hypocotyls 3 (NPH3), a protein known to be essential for phototropic responses, they examined its phosphorylation, the addition or removal of a phosphate group to the protein molecule. Using a series of pharmacological treatments and immunoblot assays, the team discovered that NPH3 was a phosphorylated protein – a protein with a phosphate group attached – in seedlings grown in the darkness. When the seedlings were exposed to light, they became dephosphorylated, or lost their phosphate group.

These results suggest that the absorption of light by phot1, the dominant receptor controlling phototropism, leads to NPH3’s loss of a phosphate group, allowing further progression of phototropic signaling.

“We found that exposure to directional blue light stimulated NPH3’s dephosphorylation,” Liscum said. “NPH3 exists as a phosphorylated protein in darkness and is rapidly dephosphorylated by a yet unidentified protein phosphatase in response to phot1 photoactivation by blue light.”

Liscum and Pedmale now plan to study which amino acids on NPH3 are reversibly phosporylated and how NPH3 is involved in regulating other processes within plants.

Source: University of Missouri-Columbia

Explore further: Jumping hurdles in the RNA world

add to favorites email to friend print save as pdf

Related Stories

LiquidPiston unveils quiet X Mini engine prototype

4 hours ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Rare new species of plant: Stachys caroliniana

5 hours ago

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

New terahertz device could strengthen security

5 hours ago

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

European space plane set for February launch

5 hours ago

Europe's first-ever "space plane" will be launched on February 11 next year, rocket firm Arianespace said Friday after a three-month delay to fine-tune the mission flight plan.

Recommended for you

Jumping hurdles in the RNA world

Nov 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.