Study reveals new, cost-efficient method for creating portable hydrogen fuel cells

Jun 28, 2007

A new paper published in Journal of the American Ceramic Society proposes a new method of producing hydrogen for portable fuel cells.

This new method negates the need for the complicated and expensive equipment currently used. With their ability to work steadily for 10-20 times the length of equivalently sized Lithium-ion batteries, portable fuel cells are ideal energy suppliers for devices such as computers, cell phones and hybrid vehicles.

Significant amounts of hydrogen are needed to power these long-lived fuel cells, but producing the chemical has, until this point, been costly and difficult. Zhen-Yan Deng, lead author of the study, found that modified aluminum powder can be used to react with water to produce hydrogen at room temperature and under normal atmospheric pressure. The result is a cost-efficient method for powering fuel cells that will make their use a more practical and realistic option in many applications.

Efforts to produce large amounts of hydrogen for portable devices have previously focused on other chemicals; however, compared to other hybrids, aluminum is cheaper and requires no other chemical in order to react with water. “This makes the modified aluminum powder a more economically viable material to generate hydrogen for the future use of portable fuel cells,” says Deng.

Source: Blackwell Publishing Ltd.

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

Hydrogen fuel cell for phone charging set for 2013

Sep 22, 2012

(Phys.org)—A three-way collaboration between Japan-based Rohm, Aquafairy, and Kyoto University has resulted in the development of a smartphone-charging fuel cell—a compact, high output, portable hydrogen ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0