Nanolaser Device Detects Cancer in Single Cells

Jan 24, 2006
Nanolaser Device Detects Cancer in Single Cells
Single cells can flow through this nanoscale biocavity laser, enabling malignant cells to be differentiated from normal cells. Courtesy of Sandia National Laboratory.

Using an ultrafast, nanoscale semiconductor laser, investigators at Sandia National Laboratories in New Mexico, have discovered a way of rapidly distinguishing between malignant and normal cells. Moreover, this new technique has the potential of detecting cancer at a very early stage, a development that could change profoundly the way cancer is diagnosed and treated.

Reporting its work in the journal Biomedical Microdevices, a team of researchers led by Paul Gourley, Ph.D., described the methods it used to construct a device that can flow cells one at a time past an ultrafast laser, and how this device revealed that malignant cells have a characteristic optical response that differs from that of a normal cell. This response, the researchers found, arises from the fact that mitochondria, the internal organelles that produce a cell’s energy, are scattered in a chaotic, unorganized manner in malignant cells, while they form organized networks in healthy cells. This difference produces a marked change in the way that malignant cells scatter laser light.

The researchers were then able to show that they could measure this change when flowing individual cells through a “biocavity laser” that Gourley’s group had previously developed. The change shows up as a difference in the fluorescent signal they observed at two different frequencies of light. The investigators note that they are now studying other cellular components to determine if these intracellular structures also have laser-detectable differences between malignant and normal cells.

This work is detailed in a paper titled, “Ultrafast nanolaser flow device for detecting cancer in single cells.” An investigator from the University of California, San Diego, also participated in this study.

An abstract is available through PubMed.

Source: National Cancer Institute

Explore further: Scientists improve microscopic batteries with homebuilt imaging analysis

add to favorites email to friend print save as pdf

Related Stories

Venom gets good buzz as potential cancer-fighter

Aug 11, 2014

Bee, snake or scorpion venom could form the basis of a new generation of cancer-fighting drugs, scientists will report here today. They have devised a method for targeting venom proteins specifically to malignant cells while ...

Inside the cell, an ocean of buffeting waves

Aug 14, 2014

Conventional wisdom holds that the cytoplasm of mammalian cells is a viscous fluid, with organelles and proteins suspended within it, jiggling against one another and drifting at random. However, a new biophysical ...

Recommended for you

Ultrafast remote switching of light emission

28 minutes ago

Researchers from Eindhoven University of Technology can now for the first time remotely control a miniature light source at timescales of 200 trillionth of a second. They published the results on Sept. 2014 ...

Blades of grass inspire advance in organic solar cells

1 hour ago

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, an international research team led by Alejandro Briseno of the University of Massachusetts Amherst ...

Nanotube cathode beats large, pricey laser

6 hours ago

Scientists are a step closer to building an intense electron beam source without a laser. Using the High-Brightness Electron Source Lab at DOE's Fermi National Accelerator Laboratory, a team led by scientist ...

User comments : 0