Nanolaser Device Detects Cancer in Single Cells

Jan 24, 2006
Nanolaser Device Detects Cancer in Single Cells
Single cells can flow through this nanoscale biocavity laser, enabling malignant cells to be differentiated from normal cells. Courtesy of Sandia National Laboratory.

Using an ultrafast, nanoscale semiconductor laser, investigators at Sandia National Laboratories in New Mexico, have discovered a way of rapidly distinguishing between malignant and normal cells. Moreover, this new technique has the potential of detecting cancer at a very early stage, a development that could change profoundly the way cancer is diagnosed and treated.

Reporting its work in the journal Biomedical Microdevices, a team of researchers led by Paul Gourley, Ph.D., described the methods it used to construct a device that can flow cells one at a time past an ultrafast laser, and how this device revealed that malignant cells have a characteristic optical response that differs from that of a normal cell. This response, the researchers found, arises from the fact that mitochondria, the internal organelles that produce a cell’s energy, are scattered in a chaotic, unorganized manner in malignant cells, while they form organized networks in healthy cells. This difference produces a marked change in the way that malignant cells scatter laser light.

The researchers were then able to show that they could measure this change when flowing individual cells through a “biocavity laser” that Gourley’s group had previously developed. The change shows up as a difference in the fluorescent signal they observed at two different frequencies of light. The investigators note that they are now studying other cellular components to determine if these intracellular structures also have laser-detectable differences between malignant and normal cells.

This work is detailed in a paper titled, “Ultrafast nanolaser flow device for detecting cancer in single cells.” An investigator from the University of California, San Diego, also participated in this study.

An abstract is available through PubMed.

Source: National Cancer Institute

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Analyzing living cells quickly and accurately

Apr 02, 2014

In order to investigate inflammation, tumors or stem cells, medical practitioners analyze living cells. Non-invasive optical procedures such as Raman spectroscopy accelerate this procedure. Researchers have ...

Split-second snapshots of protein development

Mar 03, 2014

The birth of a protein is one of the most fundamental aspects of life as we know it, yet, surprisingly, there is still a lot that scientists do not know about them.

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...