Nanolaser Device Detects Cancer in Single Cells

Jan 24, 2006
Nanolaser Device Detects Cancer in Single Cells
Single cells can flow through this nanoscale biocavity laser, enabling malignant cells to be differentiated from normal cells. Courtesy of Sandia National Laboratory.

Using an ultrafast, nanoscale semiconductor laser, investigators at Sandia National Laboratories in New Mexico, have discovered a way of rapidly distinguishing between malignant and normal cells. Moreover, this new technique has the potential of detecting cancer at a very early stage, a development that could change profoundly the way cancer is diagnosed and treated.

Reporting its work in the journal Biomedical Microdevices, a team of researchers led by Paul Gourley, Ph.D., described the methods it used to construct a device that can flow cells one at a time past an ultrafast laser, and how this device revealed that malignant cells have a characteristic optical response that differs from that of a normal cell. This response, the researchers found, arises from the fact that mitochondria, the internal organelles that produce a cell’s energy, are scattered in a chaotic, unorganized manner in malignant cells, while they form organized networks in healthy cells. This difference produces a marked change in the way that malignant cells scatter laser light.

The researchers were then able to show that they could measure this change when flowing individual cells through a “biocavity laser” that Gourley’s group had previously developed. The change shows up as a difference in the fluorescent signal they observed at two different frequencies of light. The investigators note that they are now studying other cellular components to determine if these intracellular structures also have laser-detectable differences between malignant and normal cells.

This work is detailed in a paper titled, “Ultrafast nanolaser flow device for detecting cancer in single cells.” An investigator from the University of California, San Diego, also participated in this study.

An abstract is available through PubMed.

Source: National Cancer Institute

Explore further: Engineered proteins stick like glue—even in water

add to favorites email to friend print save as pdf

Related Stories

Venom gets good buzz as potential cancer-fighter

Aug 11, 2014

Bee, snake or scorpion venom could form the basis of a new generation of cancer-fighting drugs, scientists will report here today. They have devised a method for targeting venom proteins specifically to malignant cells while ...

Inside the cell, an ocean of buffeting waves

Aug 14, 2014

Conventional wisdom holds that the cytoplasm of mammalian cells is a viscous fluid, with organelles and proteins suspended within it, jiggling against one another and drifting at random. However, a new biophysical ...

Recommended for you

Engineers show light can play seesaw at the nanoscale

11 hours ago

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

Engineered proteins stick like glue—even in water

Sep 21, 2014

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed ...

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 0