Astrophysical Device Will Sniff Out Terrorism

Jan 19, 2006

Astrophysicists spend most of their time looking for objects in the sky, but 9/11 changed Ryan McLean's orientation.

Right after the terrorist attacks, the Caltech staff scientist began applying his knowledge about detectors that study galaxies to the design of new sensors for detecting radioactive materials near possible terrorist targets. A few months ago, the U.S. Department of Homeland Security awarded McLean the first phase of a $2.2 million contract to develop a radiation-detection module.

"Before 9/11, I had a safe feeling that life was great," says McLean, who came to Caltech in 1999 to work for Professor of Physics Christopher Martin, developing projects in which rockets were launched with instruments that, during their five minutes above the atmosphere, observed the dust and hot gases in the Milky Way. "But I have two young kids, and now I realize that things may not be so stable."

The first part of McLean's project is to create a specialized chip that turns a semiconducting crystal into a detector that can find a radiation source up to 100 meters away and tell whether it's harmful radiation from a dirty bomb, or harmless radiation from, say, a truckload of fertilizer. In the second phase, which could begin by the middle of 2006, he'll build a workable device.

The problem with current detectors is that they are often set off by essentially benign materials. They also tend to be large pieces of equipment located only at the nation's entry points, such as ports.

McLean wants to make detectors that will ignore natural radiation sources like fertilizer and that will also be small and mobile, so that security officers can take them anywhere and target any ship, truck, or building.

McLean, who has also contributed to a project at the Lawrence Livermore National Laboratory (LLNL) to build a radiation detector the size of a cell phone, plans to use a sensor made of cadmium zinc telluride, which has been used in telescopes to detect gamma rays and X rays. The advantage of these crystals is that they work at room temperature, unlike other sensors that work only at very low temperatures.

To accomplish this, McLean teamed with the X-ray/gamma-ray group at Caltech's Space Radiation Laboratory (SRL), which is led by Professor of Physics Fiona Harrison. The SRL has been developing cadmium zinc telluride gamma-ray sensors, as well as custom, low-noise, low-power electronic chips for X-ray and gamma-ray instruments, for more than 10 years. While SRL's efforts have largely focused on developing these sensors for space missions, after 9/11 SRL teamed with LLNL to develop a chip for a handheld radiation monitor for Homeland Security.

Surprisingly, looking for radiation on the ground is not much different from searching for it in space. "What we are doing with Ryan is taking the best of what we developed for the previous Homeland Security device, and combining it with the best of what we developed for our space instruments," says senior SRL engineer Rick Cook. Everything SRL has learned about the pros and cons of the cadmium zinc telluride itself will also be key to making this project a success.

McLean says that he does not expect the project to put Caltech into the antiterrorism radiation-detection business. If his device shows promise, the technology could be licensed to a company that would manufacture a range of detection products at relatively low cost, making widespread use feasible.

"The idea is that if you could have lots of small detectors, you might have a better chance of detecting harmful nuclear material than if you're stationed only at central locations, like bridges and ports," he says.

Given government officials' warnings that it is only a matter of time before the next terrorist attack in the United States, McLean says that there is a lot of pressure to complete the work quickly. "It helps push the project along."

Source: Caltech

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Korean tech start-ups offer life beyond Samsung

Feb 23, 2015

As an engineering major at Seoul's Yonsei University, Yoon Ja-Young was perfectly poised to follow the secure, lucrative and socially prized career path long-favoured by South Korea's elite graduates.

Fresh nuclear leak detected at Fukushima plant

Feb 22, 2015

Sensors at the Fukushima nuclear plant have detected a fresh leak of highly radioactive water to the sea, the plant's operator announced Sunday, highlighting difficulties in decommissioning the crippled plant.

Spacewalking astronauts route cable in 1st of 3 jobs

Feb 22, 2015

(AP)—Spacewalking astronauts routed more than 300 feet (90 meters) of cable outside the International Space Station on Saturday, tricky and tiring advance work for the arrival of new American-made crew ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.