Toward a Quantum Computer, One Dot at a Time

Jan 19, 2006

Researchers at the University of Pittsburgh have developed a way to create semiconductor islands smaller than 10 nanometers in scale, known as quantum dots. The islands, made from germanium and placed on the surface of silicon with two-nanometer precision, are capable of confining single electrons.

“We believe this development moves us closer to our goal of constructing a quantum computer,” said Jeremy Levy, Pitt professor of physics and astronomy and director of the Pittsburgh-based Center for Oxide-Semiconductor Materials for Quantum Computation. Levy and colleagues reported on the advance in a paper published in October 2005 in the journal Applied Physics Letters.

Quantum computers do not yet exist, but it is known that they can bypass all known encryption schemes used today on the Internet. Quantum computers also are capable of efficiently solving the most important equation in quantum physics: the Schrödinger equation, which describes the time-dependence of quantum mechanical systems. Hence, if quantum computers can be built, they likely will have as large an impact on technology as the transistor.

Electrons have a property known as “spin,” which can take one of two directions-clockwise and counter-clockwise. Because of their quantum-mechanical nature, electrons can spin in both directions at once. That bizarre property allows the spin to be used as a “quantum bit” in a quantum computer. The ability to confine individual electrons, as opposed to “puddles” of electrons used in conventional computer technology, is essential for the working of a quantum computer.

The next step, said Levy, is to perform electronic and optical measurements on these materials to prove that there is indeed one electron on each quantum dot and to probe the coupling between the spins of neighbor electrons. “We can do that now because we have this control over the spacing and the size,” he said.

The results achieved by Levy and colleagues are an example of “essentially nano” research, which involves manipulating properties at the smallest scales-from one to 20 nanometers.

Pitt has invested heavily in nanoscale research, beginning with the establishment of its Institute for NanoScience and Engineering (INSE), and continuing with the NanoScale Fabrication and Characterization Facility, which contains core technology such as electron-beam lithography, transmission electron microscopes, and a state-of-the-art cleanroom environment. The INSE is an integrated, multidisciplinary organization that brings coherence to the University's research efforts and resources in the fields of nanoscale science and engineering. For more information, visit www.nano.pitt.edu.

Other researchers on the study were John T. Yates Jr., R.K. Mellon Professor of Chemistry and Physics at Pitt; former Pitt chemistry graduate student Olivier Guise; Joachim Ahner of Pittsburgh-based Seagate Technology; and Venugopalan Vaithyanathan and Darrell G. Schlom of Pennsylvania State University.

This research was supported by the Defense Advanced Research Projects Agency's Quantum Information Science and Technology Program.

Source: University of Pittsburgh

Explore further: From tobacco to cyberwood

Related Stories

Getting a critical edge on plutonium identification

Mar 24, 2015

A collaboration between NIST scientists and colleagues at Los Alamos National Laboratory (LANL) has resulted in a new kind of sensor that can be used to investigate the telltale isotopic composition of plutonium ...

Recommended for you

From tobacco to cyberwood

15 hours ago

Swiss scientists from ETH Zurich have developed a thermometer that is at least 100 times more sensitive than previous temperature sensors. It consists of a bio-synthetic hybrid material of tobacco cells and nanotubes.

Scientists convert microbubbles to nanoparticles

18 hours ago

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

'Atomic chicken-wire' is key to faster DNA sequencing

22 hours ago

An unusual and very exciting form of carbon - that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research ...

3-D images of tiny objects down to 25 nanometres

23 hours ago

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.