Cosmic raise in cloud

Jan 19, 2006

New evidence that events in outer space affect the weather and climate of Earth has been revealed in a study by meteorologists at the University of Reading published in the Proceedings of the Royal Society on Wednesday 18 January.

In their paper ‘Empirical evidence for a non-linear effect of galactic cosmic rays on clouds’, Drs Giles Harrison and David Stephenson suggest that cosmic rays have a significant effect on the Earth’s lower atmosphere – particularly on levels of cloudiness.

The Reading meteorologists discovered that the chance of an overcast day decreases by 20% on days with low cosmic ray fluxes. The effect is strongest when low cosmic ray fluxes occur – this is often associated with solar flares, but may also result from changes outside the solar system.

“Back in 1959, Edward Ney suggested that variations in cosmic rays, which are charged particles mostly originating outside the solar system, could affect our weather,” said Dr Harrison. “This research now provides strong evidence supporting Ney’s suggestion, which effectively links atmospheric and space science.”

“As well as the influence of weather, our evidence shows a small yet statistically significant effect of cosmic rays on daily cloudiness. This suggests that cosmic rays are an additional external source of climate variability that should be considered when modelling past and future climate.”

To detect changes in the atmosphere from cosmic rays, Harrison and Stephenson used solar radiation measurements made by meteorological stations. They conducted a careful analysis of the UK archives of daily solar radiation observations from 1951-2004 and compared them with neutron counter cosmic ray measurements taken at Climax, Colorado, between 1951 and 2000.

In 1927, the British physicist C.T.R. Wilson received the Nobel Prize for the cloud chamber, which he invented to simulate atmospheric cloud processes. The cloud chamber makes cosmic rays visible by condensing water droplets on ions produced by the cosmic rays. Wilson developed the cloud chamber in the 1890s to simulate atmospheric cloud production processes. He initially thought that ions provided all the nuclei in the atmosphere for cloud formation, but subsequently discovered that clouds formed on uncharged particles too. The mechanism suggested by Harrison and Stephenson to explain the effect of cosmic rays on clouds found is different to Wilson's, and depends on the particles formed by ions, rather than the action of the ions themselves. This is an important distinction, as the cloud chamber does not reproduce real atmospheric conditions. Wilson's work was also published in the Proceedings of the Royal Society.

Cosmic rays were discovered by Viktor Hess, following a high altitude balloon flight in August 1912. Hess received the Nobel prize for the discovery in 1936.

Source: University of Reading

Explore further: N. America treated to partial solar eclipse Thurs.

add to favorites email to friend print save as pdf

Related Stories

Black hole activity deduced from reflected X-rays

Oct 03, 2014

The supermassive black hole in the center of our galaxy, known as Sagittarius A*, is pretty quiet for a black hole. It does however flare up from time to time, when material is captured, as can be seen in ...

How cloud chambers revealed subatomic particles

Sep 23, 2014

Atoms are made of electrons, protons and neutrons. Protons and neutrons are in turn made up of quarks. These are just some of the elementary particles that make up the foundation of modern particle physics. ...

CLOUD sees through the haze

Jun 11, 2014

The CLOUD (Cosmic Leaving OUtdoor Droplets) experiment at CERN, which is studying whether cosmic rays have a climatically significant effect on aerosols and clouds, is also tackling one of the most challenging ...

Recommended for you

China to send orbiter to moon and back

50 minutes ago

China will launch its latest lunar orbiter in the coming days, state media said Wednesday, in its first attempt to send a spacecraft around the moon and back to Earth.

NASA Webb's heart survives deep freeze test

10 hours ago

After 116 days of being subjected to extremely frigid temperatures like that in space, the heart of the James Webb Space Telescope, the Integrated Science Instrument Module (ISIM) and its sensitive instruments, ...

Cosmic rays threaten future deep-space astronaut missions

15 hours ago

Crewed missions to Mars remain an essential goal for NASA, but scientists are only now beginning to understand and characterize the radiation hazards that could make such ventures risky, concludes a new paper ...

Big black holes can block new stars

17 hours ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

User comments : 0