Cosmic raise in cloud

Jan 19, 2006

New evidence that events in outer space affect the weather and climate of Earth has been revealed in a study by meteorologists at the University of Reading published in the Proceedings of the Royal Society on Wednesday 18 January.

In their paper ‘Empirical evidence for a non-linear effect of galactic cosmic rays on clouds’, Drs Giles Harrison and David Stephenson suggest that cosmic rays have a significant effect on the Earth’s lower atmosphere – particularly on levels of cloudiness.

The Reading meteorologists discovered that the chance of an overcast day decreases by 20% on days with low cosmic ray fluxes. The effect is strongest when low cosmic ray fluxes occur – this is often associated with solar flares, but may also result from changes outside the solar system.

“Back in 1959, Edward Ney suggested that variations in cosmic rays, which are charged particles mostly originating outside the solar system, could affect our weather,” said Dr Harrison. “This research now provides strong evidence supporting Ney’s suggestion, which effectively links atmospheric and space science.”

“As well as the influence of weather, our evidence shows a small yet statistically significant effect of cosmic rays on daily cloudiness. This suggests that cosmic rays are an additional external source of climate variability that should be considered when modelling past and future climate.”

To detect changes in the atmosphere from cosmic rays, Harrison and Stephenson used solar radiation measurements made by meteorological stations. They conducted a careful analysis of the UK archives of daily solar radiation observations from 1951-2004 and compared them with neutron counter cosmic ray measurements taken at Climax, Colorado, between 1951 and 2000.

In 1927, the British physicist C.T.R. Wilson received the Nobel Prize for the cloud chamber, which he invented to simulate atmospheric cloud processes. The cloud chamber makes cosmic rays visible by condensing water droplets on ions produced by the cosmic rays. Wilson developed the cloud chamber in the 1890s to simulate atmospheric cloud production processes. He initially thought that ions provided all the nuclei in the atmosphere for cloud formation, but subsequently discovered that clouds formed on uncharged particles too. The mechanism suggested by Harrison and Stephenson to explain the effect of cosmic rays on clouds found is different to Wilson's, and depends on the particles formed by ions, rather than the action of the ions themselves. This is an important distinction, as the cloud chamber does not reproduce real atmospheric conditions. Wilson's work was also published in the Proceedings of the Royal Society.

Cosmic rays were discovered by Viktor Hess, following a high altitude balloon flight in August 1912. Hess received the Nobel prize for the discovery in 1936.

Source: University of Reading

Explore further: Water fleas prepared for trip to space

add to favorites email to friend print save as pdf

Related Stories

Hunting for dark matter in a gold mine

Dec 09, 2014

"What really impressed me was the trip down," said astrophysicist James Buckley, PhD, speaking of the vertical mile he traveled to get to the site of an underground dark-matter experiment. "You can see you're ...

Estimating the magnetic field of an exoplanet

Nov 20, 2014

Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they ...

Sun's rotating 'magnet' pulls lightning towards UK

Nov 19, 2014

(Phys.org) —The Sun may be playing a part in the generation of lightning strikes on Earth by temporarily 'bending' the Earth's magnetic field and allowing a shower of energetic particles to enter the upper ...

Illusions in the cosmic clouds

Oct 27, 2014

Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and ...

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

Recommended for you

Water fleas prepared for trip to space

33 minutes ago

Local 'Daphnia' waterfleas are currently being prepared by scientists at the University of Birmingham for their trip to the International Space Station (ISS), where they will be observed by astronauts.

The worst trip around the world

48 minutes ago

As you celebrate the end of the year in the warmth of your home, spare a thought for the organisms riding with a third-class ticket on the International Space Station – bolted to the outside with no protection ...

Image: Multicoloured view of supernova remnant

50 minutes ago

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

53 minutes ago

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

1 hour ago

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.