LISA and the search for Einstein's waves

Jan 19, 2006
The LISA configuration
The LISA configuration. Credit: PPARC

Scientists from across the world came together in London on 12-13 January to review the scientific and technical status of the LISA mission, the world’s first gravitational wave observatory, at a meeting organised by the Royal Astronomical Society (RAS) and the Institute of Physics.

Scheduled for launch in 2016, LISA will be the largest scientific instrument ever constructed, consisting of three spacecraft, each separated by 5 million kilometres (3 million miles). Its task will be to detect the elusive gravitational waves which were predicted by Einstein’s Theory of General Relativity, published in 1916. To date, although astronomers have indirect evidence of their existence, none have yet been detected directly.

LISA will be one of the most challenging space science missions ever flown. In order to detect the passage of a gravitational wave, the distance between the spacecraft must be measured by laser beams to an accuracy of ten picometres, about one millionth of the diameter of a human hair!

The LISA orbit
The LISA orbit. Credit: PPARC

Gravitational waves are emitted when very massive objects such as black holes spiral violently together or when neutron stars collide at high speed. These invisible waves squeeze and stretch spacetime as they travel to us from distant parts of the universe,

The waves travel from the source without absorption and this allows scientists to study objects at very great distances and the events that took place immediately after the birth of the Universe. Various models of the early universe predict gravitational wave emission during the first tiny fractions of a second, and if these can be detected by LISA scientists will learn a great deal about the processes active at that time.

The technology needed for gravitational wave detection in space is being developed in Europe and the US, with a major role being played by the UK. Groups at the Universities of Glasgow, Birmingham, Imperial College London and the Rutherford Appleton Laboratory have been working for over ten years to perfect the necessary instrumentation and a flight test of this hardware is planned for 2009 on a space mission called LISA Pathfinder.

Over a period of at least 2 years, LISA will detect gravitational waves from a variety of compact objects, ranging from massive black holes at great distances from the Earth to sub-solar mass white dwarfs – extremely dense, glowing remnants of dead stars - in our Galaxy.

The mission will consist of three spacecraft flying 5 million kilometres (3 million miles) apart in an equilateral triangle formation. Laser beams traveling between the spacecraft will be reflected from two test masses in each satellite. By obtaining extremely accurate measurements of the distance between the spacecraft, it will be possible to determine whether the fabric of spacetime in which they are traveling is being distorted by passing gravitational waves.

The formation of three spacecraft will face the Sun and lie in a plane that is tilted at 60 degrees to the Earth’s orbit. The trio will orbit the Sun, following 20 degrees behind the Earth, and will rotate once per year. This orbital motion will help to detect the direction of each source of gravitational radiation.

Although LISA will not be affected by vibrations that influence ground-based observatories, the test masses must be cocooned within active shields to protect them from the constant buffeting by charged particles pouring out of the Sun. Sensors will detect the relative motion of the spacecraft and the delicate test mass mirrors, and will command thrusters to minimise the relative motion.

Source: Royal Astronomical Society (RAS)

Explore further: Engineers develop new sensor to detect tiny individual nanoparticles

add to favorites email to friend print save as pdf

Related Stories

Black holes don't make a big splash

Nov 07, 2013

(Phys.org) —Throughout our universe, tucked inside galaxies far, far away, giant black holes are pairing up and merging. As the massive bodies dance around each other in close embraces, they send out gravitational ...

NASA pursues atom optics to detect the imperceptible

Oct 18, 2012

(Phys.org)—A pioneering technology capable of atomic-level precision is now being developed to detect what so far has remained imperceptible: gravitational waves or ripples in space-time caused by cataclysmic ...

Recommended for you

New method for non-invasive prostate cancer screening

9 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

10 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

11 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

15 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0