Genetic marker for insecticide resistance in mosquitoes identified

February 4, 2009

Research led by the Liverpool School of Tropical Medicine has identified the genetic basis for resistance to commonly-used insecticides in one of the major malaria-carrying mosquitoes in Africa.

Malaria remains one of the biggest killers of children and pregnant women in the developing world. Much of the effort to combat malaria is focused on controlling the mosquitoes which transmit the disease through the use of insecticides in bednets and indoor spraying.

Mosquitoes can evolve to overcome the way in which insecticides work and the emergence of insecticide-resistant strains of mosquitoes is an increasing problem, therefore understanding more about its genetic and biological basis is critical.

The group, led by Dr Charles Wondji at LSTM, studied strains of the Anopheles funestus mosquito and identified a family of genes coding for enzymes known as cytochrome P450s, detecting two genes which were associated with resistance to pyrethroid insecticide. Dr Hilary Ranson of the Liverpool School of Tropical Medicine, an author of the study, explained that these same genes were also recently identified with pyrethroid resistance in the other major malaria-carrying mosquito in Africa, Anopheles gambiae:

"We expected to find that different species and populations would have different groups of genes responsible but they are very similar. This is encouraging news because it means that work to overcome resistance in one species is likely to be effective against the other."

Furthermore, provided these genetic markers identified in laboratory populations of mosquitoes are equally predictive in the field - something currently being tested by Dr Wondji - this will overcome a major blocking point in the evaluation of wild mosquito populations. Dr Ranson explained: "Routine use of these molecular markers for resistance will provide early warning of future control problems due to insecticide resistance and should greatly enhance our ability to mitigate the potentially devastating effects of resistance on malaria control."

Source: Liverpool School of Tropical Medicine

Explore further: 'Attract and kill:' Trapping malaria mosquito mums before they lay eggs

Related Stories

Stinky feet may lead to better malaria traps

June 4, 2013

For decades, health officials have battled malaria with insecticides, bed nets and drugs. Now, scientists say there might be a potent new tool to fight the deadly mosquito-borne disease: the stench of human feet.

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Amateur paleontologist finds rare fossil of fish in Arizona

September 3, 2015

Growing up, Stephanie Leco often would dig in her backyard and imagine finding fossils of a tyrannosaurus rex. She was fascinated with the idea of holding something in her hand that was millions of years old and would give ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.