Gene-engineered flies are pest solution

January 27, 2009

For the first time, male flies of a serious agricultural pest, the medfly, have been bred to generate offspring that die whilst they are still embryos. Researchers writing in the open access journal BMC Biology describe the creation of the flies that, when released into a wild population, could out-compete the normal male flies and cause a generation of pests to be stillborn - protecting important crops.

Ernst A. Wimmer from the Georg-August-University in Göttingen, Germany, led an international team of researchers who developed the lethal Mediterranean fruit flies (Ceratitis capitata), also known as medfly. He said, “Here, we present the first alternative, radiation-free, reproductive sterility system for medfly based on transgenic embryonic lethality”.

The medfly is a devastating and economically important pest. The currently used method of controlling it is the sterile insect technique (SIT), whereby male flies are irradiated to induce reproductive sterility and then released into the wild, where competition with fertile males reduces the overall insect population. This radioactive version of the SIT has the drawback that the irradiated males are often less competitive than their wild brethren and so an awkward balance must be stuck between competitiveness and degree of sterility. According to Wimmer, “When transgenic males carrying our transgenic system mate with wild females, all progeny die during embryogenesis without the need for radiation. Due to the complete lethality, no fruit damage from developing larvae will occur and no transgenes can pass into the wild population. Moreover, males carrying this system are highly competitive”.

In order to suppress the lethality system during rearing of the flies, supplements are added to their food that switch off the genetic self-destruct. The authors write that, “Use of our embryonic lethality system, without the need for radiation, can increase the safety of SIT programs, since accidental releases would not lead to infestations of the environment and possible risks coming from isotopic sources can be eliminated for workers and the environment”.

Paper: Conditional embryonic lethality to improve the Sterile Insect Technique in Ceratitis capitata (Diptera: Tephritidae), Marc F Schetelig, Carlos Caceres, Antigone Zacharopoulou, Gerald Franz and Ernst A. Wimmer, BMC Biology (in press)

Source: BioMed Central

Explore further: A life-changing partnership: New regulatory complex turning on genes

Related Stories

Recommended for you

Earliest evidence of reproduction in a complex organism

August 3, 2015

Researchers led by the University of Cambridge have found the earliest example of reproduction in a complex organism. Their new study has found that some organisms known as rangeomorphs, which lived 565 million years ago, ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

'Snowball earth' might be slushy

August 3, 2015

Imagine a world without liquid water—just solid ice in all directions. It would certainly not be a place that most life forms would like to live.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

denijane
not rated yet Jan 28, 2009
Is it just me that finds that killing a whole specie to increase your crops is very irresponsible and cruel?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.