Research finds way to double rice crops in drought-stricken areas

November 20, 2008

University of Alberta research has yielded a way to double the output of rice crops in some of the world's poorest, most distressed areas.

Jerome Bernier, a PhD student in the U of A Department of Agricultural, Food and Nutritional Science, has found a group of genes in rice that enables a yield of up to 100 per cent more in severe drought conditions.

The discovery marks the first time this group of genes in rice has been identified, and could potentially bring relief to farmers in countries like India and Thailand, where rice crops are regularly faced with drought. Rice is the number one crop consumed by humans annually.

The results of the study were published recently in the plant sciences journal Euphytica. Bernier's research began four years ago and focused on upland rice, which, unlike the majority of rice crops, grows in non-flooded, dry fields. "If drought hits, the yield can drop to almost nothing," Bernier said. He conducted his research at the International Rice Research Institute in the Philippines, in conjunction with scientists there and in India.

He started with 126 genetic markers and narrowed his search to a group of genes that had the desired impact. In very severe drought conditions, rice strains with the new genes were shown to produce twice as those strains that did not have the genes. The new genes stimulate the rice plants to develop deeper roots, enabling it to access more of the water stored in the soil.

"For subsistence farmers who rely on the crop to feed their families, this extra yield can make a world of difference," said Bernier.

Less loss to drought may also mean an increased supply of rice globally, said Dean Spaner, Bernier's project supervisor and a professor of agricultural, food and nutritional science at the U of A.

Source: University of Alberta

Explore further: Sequencing of barley genome achieves new milestone

Related Stories

Sequencing of barley genome achieves new milestone

August 25, 2015

Barley, a widely grown cereal grain commonly used to make beer and other alcoholic beverages, possesses a large and highly repetitive genome that is difficult to fully sequence. Now a team led by scientists at the University ...

A model for ageing

August 7, 2015

Life is short, especially for the killifish, Nothobranchius furzeri: It lives for only a few months and then its time is up. During that short lifespan it passes through every phase of life from larva to venerable old fish. ...

Can gene editing provide a solution to global hunger?

July 6, 2015

According to the World Food Program, some 795 million people – one in nine people on earth – don't have enough food to lead a healthy active life. That will only get worse with the next global food crisis, predicted to ...

Recommended for you

Customizing 3-D printing

September 3, 2015

The technology behind 3-D printing is growing more and more common, but the ability to create designs for it is not. Any but the simplest designs require expertise with computer-aided design (CAD) applications, and even for ...

Surprisingly, low-toxin MRSA strains may be the real killer

September 3, 2015

The most serious MRSA infections could be those caused by superbugs which produce fewer toxins, as opposed to high toxin strains, according to surprise findings revealed today by scientists from the Department of Biology ...

Which insects are the best pollinators?

September 3, 2015

Bees top the charts for pollination success according to one of the first studies of insect functionality within pollination networks, published today by researchers at the University of Bristol and the University of St Andrews.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.