Gene against bacterial attack unravelled

Oct 28, 2008

Dutch researcher Joost Wiersinga from AMC Medical Center in Amsterdam has unravelled a genetic defense mechanism against the lethal bacteria Burkholderia pseudomallei. The research is the next step towards a vaccine against this bacterium suitable for bioweapons.

Humans have an innate defence system against deadly bacteria. However, how the step from gene to anti-bacterial effect occurs in the body is not yet known. To date, B. Pseudomallei, a bacterium suitable for bioweapons, had managed to elude medics. It can remain hidden in the human body for many years without being detected by the immune system. The bacteria can suddenly become activated and spread throughout the body, resulting in the patient dying from blood poisoning. AMC physician Joost Wiersinga and the Laboratory for Experimental Internal Medicine discovered which gene-protein combination renders the lethal bacteria B. pseudomallei harmless.

Wiersinga focussed on the so-called Toll-like receptors. These are the proteins that initiate the fight against pathogens. There are currently ten known Toll-like receptors which are located on the outside of immune cells, our body's defence system. The toll-like receptors jointly function as a 10-figure alarm code. Upon coming into contact with the immune cell each bacterium enters its own Toll code. For known pathogens this sets off an alarm in the immune system and the defence mechanism is activated. Yet B. pseudomallei fools the system by entering the code of a harmless bacterium. As a result the body's defence system remains on standby.

Yet some people are resistant: they become infected but not ill. Wiersinga found a genetic cause for this resistance. He discovered which toll receptor can fend off B. pseudomallei. He did this by rearing mice DNA in which the gene for Toll2 production was switched on and off. 'The group where the gene for Toll2 was switched off, survived the bacterial infection', says Wiersinga. 'The other receptor that we investigated, Toll4, had no effect - even though for the past ten years medics had regarded this as the most important receptor.' The ultimate aim of this study is to develop a vaccine.

Source: Netherlands Organization for Scientific Research

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

'Map of life' predicts ET. (So where is he?)

1 hour ago

Extra-terrestrials that resemble humans should have evolved on other, Earth-like planets, making it increasingly paradoxical that we still appear to be alone in the universe, the author of a new study on ...

Baby seals that practice in pools make better divers

1 hour ago

Being able to dive is what matters most for seal pups, but how do they learn to do it? Grey seal pups that can play in pools may have better diving skills once they make the move to the sea, and this could ...

Insect legs give clues to improving aircraft design

1 hour ago

Insect legs could help engineers improve the safety of long tubular structures used in aircraft to reduce weight and in hospital equipment, such as catheters. Scientists from Trinity College Dublin are looking ...

Recommended for you

Researchers discover new mechanism of DNA repair

23 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.