Oil-eating microbes give clue to ancient energy source

September 9, 2008

Microbes that break down oil and petroleum are more diverse than we thought, suggesting hydrocarbons were used as an energy source early in Earth's history, scientists heard today at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin. These microbes can change the composition of oil and natural gas and can even control the release of some greenhouse gases. Understanding the role of microbes in consuming hydrocarbons may therefore help us access their role in the natural control of climate change.

"Hydrocarbons like oil and natural gas are made up of carbon and hydrogen, they are among the most abundant substances on Earth," said Dr Friedrich Widdel from the Max Planck Institute for Marine Microbiology in Bremen, Germany. "Even though we use them as fuel sources, they are actually very unreactive at room temperature. This makes them difficult to use as a biological energy source, particularly if there is no oxygen around."

For over 100 years scientists have known that microbes such as bacteria can use hydrocarbons like oil and gas as nutrients. But this process usually requires supplies of oxygen to work at room temperature. "Scientists were always fascinated by the microbes that do this because hydrocarbons are so unreactive," said Dr Widdel. "But it is even more surprising to find an increasing number of microbes that can digest hydrocarbons without needing oxygen."

"The striking diversity of micro-organisms that can break down hydrocarbons may reflect the early appearance of these compounds as nutrients for microbes in Earth's history; Bacteria and archaea living with hydrocarbons therefore may have appeared early in the evolution of life," said Dr. Widdel.

These bacteria and archaea thrive in the hidden underworld of mud and sediments. You can find them in sunken patches of oil under the sea, in oil and gas seeping out underground, and maybe even in oil reservoirs. Their product, hydrogen sulphide, may nourish an unusual world of simple animal life around such seeps via special symbiotic bacteria.

Scientists have identified particular symbioses between archaea and bacteria that are capable of consuming the greenhouse gas methane before it can escape from the ocean's sediments. Others that have been discovered contribute to the bioremediation or cleaning up of petroleum contaminated water supplies in underground aquifers.

"This astounding oxygen-independent digestion of hydrocarbons is only possible via unique, formerly unknown enzymes," said Dr Widdel. "By getting a better understanding of the way these enzymes and microbes are functioning we will also have a better understanding of natural greenhouse gas control and the way hydrocarbons are naturally recycled into carbon dioxide."

Source: Society for General Microbiology

Explore further: Bacteria in the world's oceans produce millions of tonnes of hydrocarbons each year

Related Stories

Using microbes to clean up oil spills

October 20, 2015

Catherine Drennan, a professor of chemistry and biology, likes to wax poetic about the complex chemistry of microbes. "I think they're elegant and beautiful," she says. Of course, she also sees their practical applications. ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

A blue, neptune-size exoplanet around a red dwarf star

November 25, 2015

A team of astronomers have used the LCOGT network to detect light scattered by tiny particles (called Rayleigh scattering), through the atmosphere of a Neptune-size transiting exoplanet. This suggests a blue sky on this world ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.