Comparing apples and pears: Scientists see health-determining air paths in fruit

July 10, 2008
Montage of a pear and its inner structure, including the air pathways. Credit: P. Verboven

Pears and apples contain air pathways to "breathe". The pathways are microscopically small structures for oxygen supply and are key elements in determining the fruit's health.

Researchers from the Catholic University of Leuven in Belgium and the European Synchrotron Radiation Facility (ESRF) have visualized them for the first time, therefore proving their hypothesized existence. In apples, the pathways appear as irregular cavities between cells, whilst in pears they have the shape of tiny interconnected channels. These results allow a better understanding of how the fruit degrades after harvest and provide a scientific explanation of the everyday experience that pears are more susceptible to decay during storage.

Apples and pears continue to "breathe" after picking. To keep the fruit healthy, a minimum level of oxygen must be supplied to all cells of the fruit. If this does not happen, internal browning disorders appear and fruit quality decreases. This is why fruit is stored in dedicated cool rooms with accurate control of oxygen levels. The correct oxygen concentration is related to the complex mechanisms of gas exchange, respiration and fermentation in the fruit.

The correct oxygen concentration is related to the complex mechanisms of gas exchange, respiration and fermentation in the fruit. Restricted gas exchange leads to too low a level of oxygen inside the cells. Three-dimensional images of the fruit microstructure help to determine and explain gas exchange rates and when fruit cells start to die and browning initiates. Such imaging is not easy as fruit contains a lot of water and the resolution and contrast of conventional medical 3-D scanners is insufficient.

The Leuven team used the European Synchrotron Radiation Facility in Grenoble to perform tomographic imaging of fruit samples. As the researchers report in the recent issue of Plant Physiology, the powerful equipment produces 3-D images that are accurate down to and below 1/1000 of a millimeter, with sufficient contrast to separate out void spaces from cells. The images are now used in computer models to calculate oxygen concentration in individual cells of fruit tissues.

"It is still unclear how airways in the fruit develop, and why apples have cavity structures and pears micro-channel networks", explains Pieter Verboven, from the Catholic University of Leuven and corresponding author of the paper. However, the results do help explain why pears are so prone to decay during storage: "The micro-channels are so small that oxygen supply to the fruit core is very limited and cells are quickly 'out of breath' when oxygen levels fall below the safety threshold", he asserts.

Source: European Synchrotron Radiation Facility

Explore further: Genome engineering paves the way for sickle cell cure

Related Stories

Genome engineering paves the way for sickle cell cure

October 12, 2016

A team of physicians and laboratory scientists has taken a key step toward a cure for sickle cell disease, using CRISPR-Cas9 gene editing to fix the mutated gene responsible for the disease in stem cells from the blood of ...

Novel target for diabetes drug identified as ion exchanger

October 13, 2016

Nagoya University-led researchers use nematode worms as a model to identify a new target of the type 2 diabetes drug metformin; ion exchanger protein NHX-5 and its related protein in fruit flies are potential metformin targets, ...

Recommended for you

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

The song of silence

December 8, 2016

Like humans learning to speak, juvenile birds learn to sing by mimicking vocalizations of adults of the same species during development. Juvenile birds preferentially learn the song of their own species, even in noisy environments ...

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

A nano-roundabout for light

December 8, 2016

Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.