First-class protein crystals thanks to weightlessness on earth

April 23, 2008

Dutch chemist Paul Poodt has developed two attractive alternatives for allowing protein crystals to grow under weightless conditions. If the crystals are grown upside down in a strong magnetic field, fluid flows that disrupt crystal growth are suppressed. Therefore, high-quality proteins no longer need to be grown in space, but can be grown here on earth.

Protein crystals provide vital knowledge for drug development. The production of an effective drug requires knowledge of how biomolecules such as body proteins are constructed. If you want to know how proteins work, you must first of all determine their molecular structure using X-ray diffraction.

This requires exceptionally high-quality protein crystals. However, allowing these to grow can be extremely difficult and sometimes even impossible: the presence of gravity gives rise to fluid flows in the crystal solution, which, in turn, disrupt the growth process. Undisturbed growth yields the finest crystals.

In order to prevent fluid flows, the decision is often taken to grow the protein crystals in space on. However, as this is a very expensive and time-consuming undertaking, scientists are looking for methods to create weightlessness on earth. The experiment in Nijmegen is the first in the world to demonstrate that a crystal can grow uniformly in a strong magnetic field.

Source: NWO

Explore further: Detailed structure of cell's garbage disposal unit reveals surprise in how it is targeted by cancer drugs

Related Stories

Picoscale precision though ultrathin film piezoelectricity

August 10, 2016

Piezoelectricity (aka the piezoelectric effect) occurs within certain materials – crystals (notably quartz), some ceramics, bone, DNA, and a number of proteins – when the application of mechanical stress or vibration ...

Solving molecular structures

June 9, 2016

Determining the chemical formula of a protein is fairly straightforward, because all proteins are essentially long chains of molecules called amino acids. Each chain, however, folds into a unique three-dimensional shape that ...

Rutgers researchers show how gene activation protein works

June 9, 2016

Rutgers University scientists have discovered the three-dimensional structure of a gene-specific transcription activation complex, providing the first structural and mechanistic description of the process cells use to turn ...

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.