A molecular map for aging in mice

November 28, 2007

Researchers at the National Institute of Aging and Stanford University have used gene arrays to identify genes whose activity changes with age in 16 different mouse tissues. The study, published November 30 in PLoS Genetics, uses a newly available database called AGEMAP to document the process of aging in mice at the molecular level. The work describes how aging affects different tissues in mice, and ultimately could help explain why lifespan is limited to just two years in mice.

As an organism ages, most tissues change their structure (for example, muscle tissues become weaker and have slow twitch rather than fast twitch fibers), and all tissues are subject to cellular damage that accumulates with age. Both changes in tissues and cellular damage lead to changes in gene expression, and thus probing which genes change expression in old age can lead to insights about the process of aging itself.

Previous studies have studied gene expression changes during aging in just one tissue. The new work stands out because it is much larger and more complete, including aging data for 16 different tissues and containing over 5.5 million expression measurements.

One noteworthy result is that some tissues (such as the thymus, eyes and lung) show large changes in which genes are active in old age whereas other tissues (such as liver and cerebrum) show little or none, suggesting that different tissues may degenerate to different degrees in old mice.

Another insight is that there are three distinct patterns of aging, and that tissues can be grouped according to which aging pathway they take. This result indicates that there are three different clocks for aging that may or may not change synchronously, and that an old animal may be a mixture of tissues affected by each of the different aging clocks.

Finally, the report compares aging in mice to aging in humans. Several aging pathways were found to be the same, and these could be interesting because they are relevant to human aging and can also be scientifically studied in mice.

CITATION: Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, et al. (2007) AGEMAP: A gene expression database for aging in mice. PLoS Genet 3(11): e201. doi:10.1371/journal.pgen.0030201, www.plosgenetics.org

Source: Public Library of Science

Explore further: Stem cells respond to mechanical forces by changing their structure

Related Stories

Dutch hospital's appeal: No more Pokemon hunting!

July 12, 2016

A Dutch hospital issued an appeal Tuesday to over-zealous fans of augmented reality game Pokemon Go not to "hunt" the fictitious monsters in the building after several mobile-clutching players ventured into restricted areas.

Monkeys get more selective with age

June 23, 2016

As people get older, they become choosier about how they spend their time and with whom they spend it. Now, researchers reporting in the Cell Press journal Current Biology on June 23 find, based on a series of experimental ...

Recommended for you

2016 climate trends continue to break records

July 19, 2016

Two key climate change indicators—global surface temperatures and Arctic sea ice extent—have broken numerous records through the first half of 2016, according to NASA analyses of ground-based observations and satellite ...

Historical records miss a fifth of global warming: NASA

July 22, 2016

A new NASA-led study finds that almost one-fifth of the global warming that has occurred in the past 150 years has been missed by historical records due to quirks in how global temperatures were recorded. The study explains ...

Weird quantum effects stretch across hundreds of miles

July 19, 2016

In the world of quantum, infinitesimally small particles, weird and often logic-defying behaviors abound. Perhaps the strangest of these is the idea of superposition, in which objects can exist simultaneously in two or more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.