A dynamical systems hypothesis of schizophrenia

Nov 09, 2007

The inconsistent expressions related to schizophrenia are newly structured in a recent study by researchers at the Universitas Pompeau Fabra (Barcelona), and Oxford University. Marco Loh, Edmund Rolls and Gustavo Deco have created a dynamical system framework to discuss the disorder, publishing on November 9, 2007 in the journal PLoS Computational Biology.

People with schizophrenia are known to have difficulty in maintaining attention, unstable thoughts, and reduced emotions. Creating a unifying and statistical model to understand these symptoms has always posed a challenge to researchers and clinicians. For this study Loh et al. developed a top-down analytical approach based on the different types of symptoms and related them to instabilities in attractor neural networks in a statistical dynamical framework.

The researchers found that a decrease in the excitatory NMDA-mediated synaptically activated receptor conductances reduces the depth of the attractor basins, therefore reducing the stability of attention in the presence of noise caused by the statistically variable firing of neurons, thus increasing distractibility. This reduced depth in the attractor basins destabilizes the activity at the network level. The cognitive symptoms of schizophrenia (like distractibility) could be caused by this attractor instability in the prefrontal cortex

Loh et al. also found that lower firing rates are produced by reducing the excitatory (NMDA) synaptic conductances, which could account in the orbitofrontal cortex for the negative symptoms associated with schizophrenia, such as a reduction of emotions.

Decreasing both the NMDA and the inhibitory conductances results in switches between attractor states and jumps from spontaneous activity into one of the attractors. This action may cause symptoms related to temporal lobe dysfunction such as delusions and paranoia.

The dynamical framework put forth in this study may better the understanding of the symptoms of schizophrenia, therefore culminating in better treatment for those with the disorder.

Source: Public Library of Science

Explore further: Scientists develop more accurate whole genome variant discovery and interpretation

Related Stories

Facebook opens first Africa office

18 minutes ago

Facebook announced Monday it had opened its first African office in Johannesburg as part of its efforts "to help people and businesses connect" on the continent.

Physicists shatter stubborn mystery of how glass forms

24 minutes ago

A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists ...

Recommended for you

Can pollution help trees fight infection?

30 minutes ago

Trees that can tolerate soil pollution are also better at defending themselves against pests and pathogens. "It looks like the very act of tolerating chemical pollution may give trees an advantage from biological ...

Improving rice flour to aid food poverty

30 minutes ago

A new, high-quality rice flour could help towards aiding global food poverty. "This rice flour serves not only as an alternative to wheat flour for those with wheat intolerance, but could also help to overcome ...

Stink bugs have strong taste for ripe fruit

2 hours ago

The brown marmorated stink bug has a bad reputation. And for good reason: every summer, this pest attacks crops and invades homes, causing both sizable economic losses and a messy, smelly nuisance—especially ...

Researchers discover how petunias know when to smell good

4 hours ago

Good timing is a matter of skill. You would certainly dress up for an afternoon business meeting, but not an evening session of binge-watching Netflix. If you were just a few hours off in your wardrobe timing, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.