Researchers studying how singing bats communicate

October 18, 2007

Bats are the most vocal mammals other than humans, and understanding how they communicate during their nocturnal outings could lead to better treatments for human speech disorders, say researchers at Texas A&M University.

Thousands of bats native to Central Texas fly overhead each night singing songs of complex syllables – but at frequencies too high for humans to hear.

Texas A&M researcher Michael Smotherman is trying to understand how Mexican Freetail bats organize syllables into songs and how their communication is linked to the brain. “If we can identify those areas in a bat brain [responsible for communication], we can learn more about how a normal [human] brain generates and orchestrates complex communication sequences,” Smotherman says. “And by understanding how that works, we can then come up with testable hypotheses about what might be going on in speech disorders.”

The researchers in Smotherman’s lab are studying two aspects of bat communication. In behavioral studies, they examine sex differences and seasonal variations in communication, and in physiology studies they try to locate the parts of the bat brain active during communication.

Mexican Freetail bats sing mostly in ultrasonic frequencies that are right above the upper limit of human hearing. Humans can sometimes hear little bits of bat songs, however, when parts of syllables drop low enough.

Bats communicate at such high frequencies because of their ability to echolocate, which means they project sound and use the echoes to determine the direction and distance of objects. As the frequency of the bat’s sound gets higher, it can detect a more detailed picture of its surroundings.

Smotherman says Mexican Freetail bats use between 15 and 20 syllables to create calls. Every male bat has its own unique courtship song. The pattern of all courtship songs is similar, but each male bat uses a different syllable in its distinctive song. Bats also use sophisticated vocal communication to draw territorial borders, define social status, repel intruders, instruct offspring and recognize each other.

“No other mammals besides humans are able to use such complex vocal sequences to communicate,” Smotherman says.

The songs bats sing are similar to bird songs. Scientists have understood the link between bird songs and the bird brain for years, but “the architecture of a bird brain is very different from that of a mammal brain,” Smotherman explains, “so it is difficult to apply knowledge about bird communication to human speech.”

The brains of all mammals are organized in basically the same way, so a bat brain has many of the same structures as a human brain. This makes it easier to infer things about human speech from studying bat communication. The researchers’ first goal is to locate the part of the bat brain responsible for singing. “The bat brain has to have some higher vocal center that’s responsible for organizing these [vocal] sequences and patterns, and we just don’t know where it is yet,” Smotherman says. “So we’re using molecular techniques to identify which regions of the brain are most active during singing.”

Smotherman and his team maintain about 75 bats in their lab. They usually collect the bats from schools and churches that report bats in their buildings. “[By doing this,] we don’t have to feel like we’re taking them out of the wild,” Smotherman says. He adds that the bats are not aggressive and are a “fantastic bat for the lab because they are quite friendly.”

Smotherman hopes that over the next decade, the group can apply its research to knowledge of human speech and help shed light on language disorders. “The fact that human speech is so unique has really constrained research in this area,” Smotherman says. “Compared to other areas of neuroscience, we’re way behind in understanding even the most basic issues of how [speech] works.”

Source: Texas A&M University

Explore further: This year, it's the Zika virus. But what about next year?

Related Stories

This year, it's the Zika virus. But what about next year?

July 28, 2016

Epidemics start in mundane ways. A child might play with a pet. An air-conditioning unit might break down. A pool of water might collect in an empty flowerpot. Any one of those actions is all it takes for a virus to find ...

Novel methods to evaluate fish response to stress

June 1, 2016

Farmed fish are submitted to many stressors that have an important impact on their health and can even lead to their premature death. The COPEWELL project has tried to help fish farmers cope with this issue by developing ...

Flight of the RoboBee

June 7, 2016

Increasingly, researchers are designing robots with forms and functions that defy our expectation of what a machine can be or do.

Bats bolster brain hypothesis, maybe technology, too

August 15, 2014

Amid a neuroscience debate about how people and animals focus on distinct objects within cluttered scenes, some of the newest and best evidence comes from the way bats "see" with their ears, according to a new paper in the ...

Rats' and bats' brains work differently on the move

April 18, 2013

A new study of brain rhythms in bats and rats challenges a widely used model - based on studies in rodents - of how animals navigate their environment. To get a clearer picture of the processes at work in the mammal brain ...

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.