Unravelling new complexity in the genome

August 13, 2007

A major surprise emerging from genome sequencing projects is that humans have a comparable number of protein-coding genes as significantly less complex organisms such as the minute nematode worm Caenorhabditis elegans. Clearly something other than gene count is behind the genetic differences between simpler and more complex life forms.

Increased functional and cellular complexity can be explained, in large part, by how genes and the products of genes are regulated. A University of Toronto-led study published in the latest issue of Genome Biology reveals that a step in gene expression (referred to as alternative splicing) is more highly regulated in a cell and tissue-specific manner than previously appreciated and much of this additional regulation occurs in the nervous system. The alternative splicing step allows a single gene to specify multiple protein products by processing the RNA transcripts made from genes (which are translated to make protein).

“We are finding that a significant number of genes operating in the same biological processes and pathways are regulated by alternative splicing differently in nervous system tissues compared to other mammalian tissues,” says lead investigator Professor Benjamin Blencowe of the Banting and Best Department of Medical Research and Centre for Cellular and Biomolecular Research (CCBR) at the University of Toronto

According to Blencowe, it is particularly interesting that many of the genes have important and specific functions in the nervous system, including roles associated with memory and learning. However, in most cases the investigators working on these genes were not aware that their favorite genes are regulated at the level of splicing. Blencowe believes that the data his group has generated provides a valuable basis for understanding molecular mechanisms by which genes can function differently in different parts of the body.

Blencowe attributes these new findings in part to the power of a new tool that he, together with his colleagues including Profs. Brendan Frey (Department of Electrical and Computer Engineering) and Timothy Hughes (Banting and Best, CCBR), developed a few years ago. This tool, which comprises tailored designed microarrays or “gene chips” and computer algorithms, allows the simultaneous measurement of thousands of alternative splicing events in cells and tissues. “Until recently researchers studied splicing regulation on a gene by gene basis. Now we can obtain a picture of what is happening on a global scale, which provides a fascinating new perspective on how genes are regulated,” Blencowe explains.

A challenge now is to figure out how the alternative splicing process is regulated in a cell and tissue-specific manner. In their new paper in Genome Biology, Dr. Yoseph Barash, a postdoctoral fellow working jointly with Blencowe and Frey, has provided what is likely part of the answer. By applying computational methods to the gene chip data generated by Matthew Fagnani (an MSc student) and other members of the Blencowe lab, Barash has uncovered what appears to be part of a “regulatory code” that controls alternative splicing patterns in the brain.

One outcome of these new studies is that the alternative splicing process appears to provide a largely separate layer of gene regulation that works in parallel with other important steps in gene regulation. “The number of genes and coordinated regulatory events involved in specifying cell and tissue type characteristics appear to be considerably more extensive than appreciated in previous studies,” says Blencowe. “These findings also have implications for understanding human diseases such as cancers, since we can anticipate a more extensive role for altered regulation of splicing events that similarly went unnoticed due to the lack of the appropriate technology allowing their detection.”

Source: University of Toronto

Explore further: Tracing the evolution of a drug-resistant pathogen

Related Stories

'Decoding' gene regulation

June 11, 2015

Researchers at the Max F. Perutz Laboratories of the University of Vienna and the Medical University of Vienna as well as at the University of Natural Resources and Life Sciences (BOKU) in Vienna have discovered an entirely ...

A novel DNA damage alarm

June 25, 2015

How does our body keep its DNA intact? Researchers at Erasmus MC have just found a new piece of this puzzle. They discovered a novel alarm that cells use to signal DNA damage. "We already knew that DNA damage triggers an ...

Herpes virus hijackers

May 22, 2015

The virus responsible for the common cold sore hijacks the machinery within our cells, causing them to break down and help shield the virus from our immune system, researchers from the University of Cambridge and colleagues ...

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.