New 'chemically-sensitive MRI scan' may bypass some invasive diagnostic tests in next decade

August 20, 2007

A new chemical compound which could remove the need for patients to undergo certain invasive diagnostic tests in the future has been created by scientists at Durham University.

Research published in the academic journal, Chemical Communications, reveals that this new compound could be used in a ‘chemically-sensitive MRI scan’ to help identify the extent of progression of diseases such as cancer, without the need for intrusive biopsies.

The researchers, who are part of an Engineering and Physical Sciences Research Council (EPSRC) funded group developing new ways of imaging cancer, have created a chemical which contains fluorine. It could, in theory, be given to the patient by injection before an MRI scan. The fluorine responds differently according to the varying acidity in the body, so that tumours could be highlighted and appear in contrast or ‘light up’ on the resulting scan.

Professor David Parker of Durham University’s Department of Chemistry explained: “There is very little fluorine present naturally in the body so the signal from our compound stands out. When it is introduced in this form it acts differently depending on the acidity levels in a certain area, offering the potential to locate and highlight cancerous tissue.”

Professor Parker’s team is the first to design a version of a compound containing fluorine which enables measurements to be taken quickly enough and to be read at the right ‘frequency’ to have the potential to be used with existing MRI scanners, whilst being used at sufficiently low doses to be harmless to the patient.

Professor Parker continued: “We have taken an important first step towards the development of a selective new imaging method. However, we appreciate that there is a lot of work to do to take this laboratory work and put it into practice. In principle, this approach could be of considerable benefit in the diagnosis of diseases such as breast, liver or prostate cancer.”

Durham University has filed a patent on this new approach and is looking for commercial partners to help develop the research. Professor Parker and his team believe that molecules containing fluorine could be used in mainstream MRI diagnoses within the next decade.

Chris Hiley, Head of Policy and Research Management at The Prostate Cancer Charity, said: “This is interesting work. The researchers are still some way from testing how this new idea might work in people but they are dealing with a knotty and important problem. In prostate cancer in particular more research is needed into cancer imaging as current techniques need improving.

“This development could have applications in many other cancers too. Once transferred from the lab to the bedside this research has potential to help show exactly where cancer may be in the body. This would add certainty to treatment decisions and improve monitoring of cancer progress. Looking even further into the future it could even have some use in improving diagnosis.”

Source: Durham University

Explore further: A better way to track emerging cell therapies using MRIs

Related Stories

A better way to track emerging cell therapies using MRIs

September 19, 2014

Cellular therapeutics – using intact cells to treat and cure disease – is a hugely promising new approach in medicine but it is hindered by the inability of doctors and scientists to effectively track the movements, destination ...

The cancer that kills men

September 4, 2014

Researchers at the Norwegian University of Science and Technology are pioneering the use of a radioactive tracer in combination with PET MRI imaging to help some prostate cancer patients avoid lengthy and unnecessary surgery.

Internal mammary lymph nodes ID'd on MRI likely to be benign

October 28, 2015

(HealthDay)—Among women with breast cancer and silicone implant reconstruction, internal mammary lymph nodes (IMLNs) identified at implant-protocol breast magnetic resonance imaging (MRI) are more likely to be benign than ...

Nanoparticles can track cells deep within living organisms

March 26, 2007

To the delight of researchers at Washington University School of Medicine in St. Louis, living cells gobbled up fluorine-laced nanoparticles without needing any coaxing. Then, because of the unusual meal, the cells were easily ...

Recommended for you

Close up of the new mineral merelaniite

October 28, 2016

A team led by a physicist from Michigan Technological University has discovered a new mineral, named for the region in Tanzania where it comes from.

133 million-year-old dinosaur brain fossil found in England

October 28, 2016

Soft tissues such as hearts and muscles are very rarely preserved in the fossil record. For that reason, nearly all study of dinosaur soft tissue has to be reconstructed from fossil bones. However, researchers in the United ...

Making energy-harvesting computers reliable

October 28, 2016

A revolutionary and emerging class of energy-harvesting computer systems require neither a battery nor a power outlet to operate, instead operating by harvesting energy from their environment. While radio waves, solar energy, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.