Sea snails break the law

April 24, 2007
Crepipatella dilatata
Smaller males on top of larger females. The eggs are brooded under the shell and so are not visible. Credit: Rachel Collin, STRI Staff Scientist

Lizards gave rise to legless snakes. Cave fishes don’t have eyeballs. In evolution, complicated structures often get lost. Dollo’s Law states that complicated structures can't be re-evolved because the genes that code for them were lost or have mutated. A group of sea snails breaks Dollo’s law, Rachel Collin, Staff Scientist at the Smithsonian Tropical Research Institute and colleagues from two Chilean universities announce in the April, 2007, Biological Bulletin.

"This is important because it shows that animals may carry the potential for evolutionary change around with them. When the environment changes, new life forms may be able to regain abilities that were lost earlier in evolutionary history," Collin explains.

Most species of sea snail go through several life stages on the way to becoming reproductive adults. The early stages, or larvae, usually live in the water column eating microscopic algae and swimming with a specialized structure called the velum. This stage has been lost in many species, where development happens in immobile capsules protected by the mother. In these species, small bottom-dwelling juvenile snails (miniature adults) hatch out of eggs and crawl away. Thus, a whole life stage, the motile larva, is lost and thought to never been re-gained.

But how can you tell what happened in the past to bring this about? Collaborators from Chile, Argentina and the Smithsonian in Panama, using embryological observations and DNA sequencing, show that the larval stage can be reacquired.

The group collected 6 species of the genus Crepipatella from the shorelines of Argentina, Chile, Panama, Peru, South Africa and the United States. They observed the developmental stages of each species and sequenced a gene called mitochondrial cytochrome oxidase I. Then, based on the differences in gene sequences, they used several different techniques to reconstruct family trees.

Indeed, they found that motile, feeding larvae had been lost and re-gained in the same family group, which breaks Dollo’s law. Collin sums this up: "The embryos of limpets in a group called Crepipatella seem to retain some of the apparatus they would need for larval feeding and swimming, even though they do not produce larvae. Then, from DNA data we see that one species with larvae has re-evolved in the middle of a group that doesn't have them. It does go both ways! There’s more flexibility in animal evolution than people thought."

Source: Smithsonian Tropical Research Institute

Explore further: Using sound to stop destructive beetles in their tracks

Related Stories

Using sound to stop destructive beetles in their tracks

November 30, 2016

What would the paradise of Hawaii be without swaying coconut palms, with succulent fruit that is almost synonymous with the tropical island? Unfortunately, that may be the future of the island unless scientists find some ...

Malaysia's unique freshwater mussels in danger

September 22, 2016

Researchers in Malaysia revealed that Peninsular Malaysia hosts at least three rare mussel species, one of which (Hyriopsis bialata) is not found anywhere else on the planet. Another species (Ensidens ingallsianus) may have ...

Coral study reveals secrets of evolution

October 5, 2016

Corals first appeared on earth nearly half a billion years ago during the Cambrian Period of the Paleozoic Era. The ancient Greek philosopher Aristotle categorized corals as zoophyta, or "plant-animals", due to their plant-like ...

Pests are easier to combat in habitats rich in species

April 1, 2015

A diverse and species-rich agricultural landscape is also beneficial to farmers. This isn't just because there are plenty of pollinating insects, creepy crawly pest controllers and other useful helpers. Scientists at the ...

Recommended for you

Swiss firm acquires Mars One private project

December 2, 2016

A British-Dutch project aiming to send an unmanned mission to Mars by 2018 announced Friday that the shareholders of a Swiss financial services company have agreed a takeover bid.

New aspect of atom mimicry for nanotechnology applications

December 2, 2016

In nanotechnology control is key. Control over the arrangements and distances between nanoparticles can allow tailored interaction strengths so that properties can be harnessed in devices such as plasmonic sensors. Now researchers ...

Evaluation of scientific rigor in animal research

December 2, 2016

The "reproducibility crisis" in biomedical research has led to questions about the scientific rigor in animal research, and thus the ethical justification of animal experiments. In research publishing in the Open Access journals ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.