Diffraction and scattering -- the solution to what's in solution

April 13, 2007
Diffraction and scattering -- the solution to what's in solution
Researchers at the Department of Energy's Argonne National Laboratory and the University of Notre Dame have successfully applied X-ray scattering techniques to determine how dissolved metal ions interact in solution. Credit: Argonne National Laboratory

Researchers at the Department of Energy’s Argonne National Laboratory and the University of Notre Dame have successfully applied X-ray scattering techniques to determine how dissolved metal ions interact in solution.

These findings will help researchers better understand how metal ions, such as those found in nuclear waste and other industrial processes, behave in the environment.

The results show that the ion structures are visible in solution and reveals their interactions with other ions.

"The scientific community has long asked the question, 'What happens to a metal ion in solution?'” said Suntharalingam “Skantha” Skanthakumar, Argonne senior scientific associate. "Direct measurement of metal correlations in solutions show long-range interactions and a strong correspondence to the structures in solution and solid state environment."

"We have been provided with additional structural and chemical insight into tetravalent actinide hydrolysis," said Lynda Soderholm, senior scientist at Argonne. "We discovered that the way atoms interact is transferable with a lot more detail than what was previously thought. Hydrolysis of dissolved metal ions is one of the most fundamental and important reactions in aqueous chemistry.”

Experiments for this work were conducted at Argonne’s Advanced Photon Source (APS). The 1,104-meter circumference APS accelerator complex, large enough to encircle a baseball stadium, houses a complex of machines and devices that produce, accelerate and store a beam of electrons that is the source of the APS X-rays. For this research, thin beams of high-energy X-rays were used to bombard the dissolved ions. When the X-rays scattered off the solutions, special CCD cameras equipped to detect them mapped out their two-dimensional pattern.

The detailed results of these findings were published in the paper, "Structures of Dimeric Hydrolysis Products of Thorium" and in the journal Inorganic Chemistry.

"Going forward, additional research is planned with thorium and other dissolvable materials across the periodic table," said Argonne postdoctoral researcher Richard E. Wilson. "The goal is to be able to predict reactions to metal contaminants and determine the chemistry that influences their transport in the environment"

This research involved collaborations from various scientific disciplines including input from physicists, chemists and geologists.

Source: Argonne National Laboratory

Explore further: Self-assembly of molecular Archimedean polyhedra

Related Stories

Self-assembly of molecular Archimedean polyhedra

July 1, 2015

Chemists truly went back to the drawing board to develop new X-shaped organic building blocks that can be linked together by metal ions to form an Archimedean cuboctahedron. In the journal Angewandte Chemie, the scientists ...

The race for better batteries

June 15, 2015

"The worldwide transition from fossil fuels to renewable sources of energy is under way…" according to the Earth Policy Institute's new book, The Great Transition.

Framework materials yield to pressure

June 11, 2015

Pressure is a powerful thermodynamic variable that enables the structure, bonding and reactivity of matter to be altered. In materials science it has become an indispensable research tool in the quest for novel functional ...

Multimetal nanoframes improve catalyst performance

April 14, 2015

A team of researchers has synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of solid Pt-Ni bimetallic nanocrystals into porous cage-like structures or nanoframes. This ...

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.