Why is the heart heart-shaped?

February 20, 2007

How does the heart attain its characteristic shape? Shape may be sculpted by cell movement, cell division, or changes in cell size and shape, all of which can be influenced by the local environment. The heart appears as a simple tube early in development; later, the tube walls bulge outward to form the cardiac chambers.

In a new study published online in the open access journal PLoS Biology, Heidi Auman, Deborah Yelon, and colleagues found, by using transgenic zebrafish in which they can watch individual cardiac cells, that cells change size and shape, enlarging and elongating to form the bulges in the heart tube and eventually the chambers.

Since the heart is beating as it develops, they asked whether cardiac function influences cell shape. Using zebrafish mutants with functional defects, they found that both blood flow and cardiac contractility influence cardiac cell shape.

The researchers propose that a balance of the cell’s internal forces (through contractility) with external forces (such as blood flow) is necessary to create the cell shapes that generate chamber curvatures. Disruption of this balance may underlie the aberrations observed in some types of heart disease.

Source: Public Library of Science

Explore further: Chemists solve major piece of cellular mystery

Related Stories

Chemists solve major piece of cellular mystery

August 27, 2015

Not just anything is allowed to enter the nucleus, the heart of eukaryotic cells where, among other things, genetic information is stored. A double membrane, called the nuclear envelope, serves as a wall, protecting the contents ...

Supercomputers listen to the heart

August 19, 2015

New supercomputer models have come closer than ever to capturing the behavior of normal human heart valves and their replacements, according to recent studies by groups including scientists at the Institute for Computational ...

Clamshell-shaped protein puts the 'jump' in 'jumping genes'

August 19, 2015

Scientists at Johns Hopkins report they have deciphered the structure and unusual shape of a bacterial protein that prepares segments of DNA for the insertion of so-called jumping genes. The clamshell shape, they say, has ...

It's alive, it's alive!

July 30, 2015

On June 3, 2015, more than a month before New Horizons, flying faster than speeding bullet, reached its rendezvous with the Pluto system, an astronomer at the Southwest Research Institute who is also a space artist posted ...

Recommended for you

ATLAS and CMS experiments shed light on Higgs properties

September 1, 2015

Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual ...

Tiny drops of early universe 'perfect' fluid

September 1, 2015

The Relativistic Heavy Ion Collider (RHIC), a particle collider for nuclear physics research at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, smashes large nuclei together at close to the speed of ...

Distant planet's interior chemistry may differ from our own

September 1, 2015

As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their chemistry could differ from that found on Earth. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.