Studying How Modified Genes Escape Into Nature

February 5, 2007
Studying How Modified Genes Escape Into Nature
These are Brassica napus synthetic lines developed by J. Chris Pires' lab. A= are rapa and C are oleracea chromosomes. Fluorescent dyes were used to to "paint" specific chromosomes and track their migration within particular hybrids. Credit: Image by J. Chris Pires

A University of Arkansas researcher and her colleagues are developing a way to examine how the genomes rearrange themselves during hybridization to better pinpoint how genetically modified organisms may behave when they cross with naturally occurring plants.

Cindy Sagers, associate professor of biological sciences in the J. William Fulbright College of Arts and Sciences; Chris Pires, assistant professor of biological sciences at the University of Missouri, Columbia; and C. Neal Stewart Jr., professor of plant sciences at the University of Tennessee are examining chromosomes using specific dyes to look at how a particular trait – say herbicide resistance – passes from one type of plant to another.

“Transgenic plants that escape into nature could become a very serious problem,” Sagers said. Some types of plants, such as canola, creeping bentgrass and rice, have mobile pollen that can cross-pollinate with relatives and related weeds, which in turn can take on the genetically modified trait. This could translate into herbicide-resistant weeds that can wipe out crop fields, or non-modified crops contaminated with modified genes – both scenarios that have happened.

Sagers and Pires have applied for a Biotechnology Risk Assessment Grant from the United States Department of Agriculture to examine how the genome rearranges itself when genetically modified organisms and wild plants hybridize. They will use fluorescent dyes to “paint” specific chromosomes and track their migration within particular hybrids. This will allow the researchers to determine what specific pairings of populations create viable hybrids with genetically modified components.

The scientists will use a relative of Arabidopsis for their research. Known as “the lab rat of the plant world,” the genetic sequence of Arabidopsis is well documented, allowing the researchers to develop detailed examinations of changes to the chromosomes in the canola crop genome.

By examining the issue of gene transfer at the chromosomal level, the researchers will be able to determine how novel genes transfer from a genetically modified crop into a weed or natural crop. This knowledge will help scientists working with genetically modified crops to better control and regulate the reproduction of desirable genes in the appropriate plants.

Sagers spent a year on a fellowship at an Environmental Protection Agency laboratory in Corvallis, Ore., studying the potential cross-pollination of herbicide resistant genes in canola. Canola makes a good experimental model because of its short life cycle, its reproduction from seeds and its ability to hybridize with close relatives.

They measured and weighed the parent and hybrid plants to see which ones fared better in highly competitive environments under selection by insect pests. The hybrids grew to be almost 15-fold larger than the parent plants.

“We know that there is hybrid vigor in the system,” Sagers said. “We also know that these hybrids can persist in the wild.”

Source: University of Arkansas, Fayetteville

Explore further: Regulatory, certification systems creating paralysis in use of genetically altered trees

Related Stories

New AUV plankton sampling system deployed

August 17, 2015

A group of Woods Hole Oceanographic Institution (WHOI) researchers and engineers have developed and tested an innovative new system for sampling small planktonic larvae in coastal ocean waters and understanding their distribution.

The potential in your pond

August 14, 2015

Scientists at the John Innes Centre have discovered that Euglena gracilis, the single cell algae which inhabits most garden ponds, has a whole host of new, unclassified genes which can make new forms of carbohydrates and ...

How a female X chromosome is inactivated

August 10, 2015

In female mammals, one of the two X chromosomes is inactivated. Thanks to research using special stem cells, geneticists at ETH Zurich have been able to provide detailed insight into the molecular mechanism behind this inactivation ...

Recommended for you

Image: Hubble sees a youthful cluster

August 31, 2015

Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic ...

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.