Comprehensive model is first to map protein folding at atomic level

November 6, 2006

Scientists at Harvard University have developed a computer model that, for the first time, can fully map and predict how small proteins fold into three-dimensional, biologically active shapes. The work could help researchers better understand the abnormal protein aggregation underlying some devastating diseases, as well as how natural proteins evolved and how proteins recognize correct biochemical partners within living cells.

The technique, which can track protein folding for some 10 microseconds -- about as long as some proteins take to assume their biologically stable configuration, and at least a thousand times longer than previous methods -- is described this week in the Proceedings of the National Academy of Sciences.

"For years, a sizable army of scientists has been working toward better understanding how proteins fold," says co-author Eugene I. Shakhnovich, professor of chemistry and chemical biology in Harvard's Faculty of Arts and Sciences. "One of the great problems in science has been deciphering how amino acid sequence -- a protein's primary structure -- also determines its three-dimensional structure, and through that its biological function. Our paper provides a first solution to the folding problem, for small proteins, at an atomic level of detail."

Fiendishly intricate, protein folding is crucial to the chemistry of life. Each of the body's 20 amino acids, the building blocks of proteins, is attracted or repulsed by water; it's largely these affinities that drive the contorting of proteins into distinctive three-dimensional shapes within the watery confines of a cell. The split-second folding of gangly protein chains into tight three-dimensional shapes has broad implications for the growing number of disorders believed to result from misfolded proteins or parts of proteins, most notably neurodegenerative disorders such as Alzheimer's and Parkinson's diseases.

The model developed by Shakhnovich and colleagues faithfully describes and catalogs countless interactions between the individual atoms that comprise proteins. In so doing, it essentially predicts, given a string of amino acids, how the resulting protein will fold -- the first computer model to fully replicate folding of a protein as happens in nature. In more than 4,000 simulations conducted by the researchers, the computer model consistently predicted folded structures nearly identical to those that have been observed experimentally.

"This work should open new vistas in protein engineering, allowing rational control of not only protein folding, but also the design of pathways that lead to these folds," says Shakhnovich, who has studied protein folding for nearly two decades. "We are also using these techniques to better understand two fundamental biological questions: How have natural proteins evolved, and how do proteins interact in living cells to recognize correct partners versus promiscuous ones?"

Source: Harvard University

Explore further: Using mathematics to improve human health

Related Stories

Using mathematics to improve human health

February 2, 2016

Scientists at the Universities of York and Torino have used mathematics as a tool to provide precise details of the structure of protein nanoparticles, potentially making them more useful in vaccine design.

Curing disease by repairing faulty genes

February 1, 2016

The genome-editing technique known as CRISPR allows scientists to clip a specific DNA sequence and replace it with a new one, offering the potential to cure diseases caused by defective genes. For this potential to be realized, ...

Sensing the future of molecule detection and bioproduction

January 28, 2016

Synthetically engineered biosensors, which can be designed to detect and signal the presence of specific small molecule compounds, have already unlocked many potential applications by harnessing bacterial cells such as E. ...

The importance of mixed motifs

January 28, 2016

Local modifications in histone proteins alter DNA packing density in the cell nucleus to regulate gene activity. They also form the basis of a code in which the significance of a given pattern or motif depends on its broader ...

Recommended for you

Intelligent robots threaten millions of jobs

February 14, 2016

Advances in artificial intelligence will soon lead to robots that are capable of nearly everything humans do, threatening tens of millions of jobs in the coming 30 years, experts warned Saturday.

Proto-planet has two masters

February 13, 2016

A Rice University researcher will discuss images that may show the formation of a planet—or a planetary system—around a distant binary star at the annual meeting of the American Association for the Advancement of Science ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.