Genome ID Method Extended to Humans

Oct 13, 2006

A mathematical discovery has extended the reach of a novel genome mapping method to humans, potentially giving cancer biology a faster and more cost-effective tool than traditional DNA sequencing.

A student-led group from the laboratory of Michael Waterman, University Professor in molecular and computational biology in USC College, has developed an algorithm to handle the massive amounts of data created by a restriction mapping technology known as “optical mapping.”

Restriction maps provide coordinates on chromosomes analogous to mile markers on freeways.

Lead author Anton Valouev, a recent graduate of Waterman’s lab and now a postdoctoral fellow at Stanford University, said the algorithm makes it possible to optically map the human genome.

“It carries tremendous benefits for medical applications, specifically for finding genomic abnormalities,” he said.

The algorithm appears in this week’s PNAS Early Edition.

Optical mapping was developed at New York University in the late 1990s by David Schwartz, now a professor of chemistry and genetics at the University of Wisconsin-Madison. Schwartz and a collaborator at Wisconsin, Shiguo Zhou, co-authored the PNAS paper.

The power of optical mapping lies in its ability to reveal the size and large-scale structure of a genome. The method uses fluorescence microscopy to image individual DNA molecules that have been divided into orderly fragments by so-called restriction enzymes.

By imaging large numbers of an organism’s DNA molecules, optical mapping can produce a map of its genome at a relatively low cost.

An optical map lacks the minute detail of a genetic sequence, but it makes up for that shortcoming in other ways, said Philip Green, a professor of genome sciences at the University of Washington who edited the PNAS paper.

Geneticists often say that humans have 99.9 percent of their DNA in common. But, Green said, “individuals occasionally have big differences in their chromosome structure. You sometimes find regions where there are larger changes.”

Such changes could include wholesale deletions of chunks of the genome or additions of extra copies. Cancer genomes, in particular, mutate rapidly and contain frequent abnormalities.

“That’s something that’s very hard to detect” by conventional sequencing, Green said, adding that sequencing can simply miss part of a genome.

Optical mapping, by contrast, can estimate the absolute length of a genome and quickly detect differences in length and structure between two genomes. Comparing optical maps of healthy and diseased genomes can guide researchers to crucial mutations.

Though he called optical mapping “potentially very powerful,” Green added that it requires such a high level of expertise that only a couple of laboratories in the world use the method.

The Waterman group’s algorithm may encourage others to take a second look.

Source: USC College

Explore further: Chemical spill had 'no impact on health': Costa Rica

Related Stories

Chromosome-folding theory shows promise

Apr 28, 2015

Human chromosomes are much bigger and more complex than proteins, but like proteins, they appear to fold and unfold in an orderly process as they carry out their functions in cells.

Genetic road map may bring about better cotton crops

Apr 20, 2015

A University of Texas at Austin scientist, working with an international research team, has developed the most precise sequence map yet of U.S. cotton and will soon create an even more detailed map for navigating ...

Whole-genome sequencing of endangered mountain gorillas

Apr 09, 2015

The first project to sequence whole genomes from mountain gorillas has given scientists and conservationists new insight into the impact of population decline on these critically endangered apes. While mountain ...

Simplifying SNP discovery in the cotton genome

Apr 01, 2015

The term "single-nucleotide polymorphism" (SNP) refers to a single base change in DNA sequence between two individuals. SNPs are the most common type of genetic variation in plant and animal genomes and are, thus, an important ...

Recommended for you

Researchers shine light on origin of bioluminescence

13 hours ago

In the mountains of Virginia, millipedes have bright yellow and black colors to warn enemies that they are toxic and not worth eating. Their cousins in California convey this warning in a very different way—by ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.