Scientists announce stem-cell discovery

April 20, 2006

U.S. scientists say they've uncovered signatures near crucial developmental genes -- a critical step toward creating embryonic stem cells for medicine.

Harvard Medical School researchers say the unique molecular imprints discovered coupled to DNA in mouse embryonic stem cells help explain the cells' ability to form almost any body cell type.

The scientists say the imprints, or "signatures," appear near the master genes that control embryonic development and probably coordinate their in the early stages of cell differentiation. Not only do the findings help to unlock the basis for embryonic stem cells' seemingly unlimited potential but the researchers say they also suggest ways to understand why ordinary cells are so limited in their abilities to repair or replace damaged cells.

"This is an entirely new and unexpected discovery," said Brad Bernstein, lead author of the study, an assistant professor at Harvard and a researcher in the Chemical Biology program at the Broad Institute. "It has allowed us to glimpse the molecular strategies that cells use to maintain an almost infinite potential, which will have important applications to our understanding of normal biology and disease."

The discovery appears in the April 21 issue of the journal Cell.

Copyright 2006 by United Press International

Explore further: Elabela identified as potential hormone for regenerative medicine

Related Stories

Scientists reveal how stem cells defend against viruses

September 21, 2015

Scientists from the Institute of Molecular and Cell Biology (IMCB), a research institute under the Agency for Science, Technology and Research (A*STAR), Singapore, have uncovered the mechanisms which embryonic stem cells ...

Improving memory with a flash of light

September 14, 2015

The burgeoning field of optogenetics has seen another breakthrough with the creation of a new plant-human hybrid protein molecule called OptoSTIM1. In South Korea, a research team led by Won Do Heo, associate professor at ...

Bar-coding technique opens up studies within single cells

September 14, 2015

All of the cells in a particular tissue sample are not necessarily the same—they can vary widely in terms of genetic content, composition, and function. Yet many studies and analytical techniques aimed at understanding ...

Recommended for you

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.