Carbon nanotube absorption measured in worms, cancer cells

March 28, 2006

University of Michigan researchers have discovered how to measure the absorption of multi-walled carbon nanoparticles into worms and cancer cells, a breakthrough that will revolutionize scientists' understanding of how the particles impact the living environment.

A team led by U-M chemical engineering professor Walter J. Weber Jr. tagged multi-walled carbon nanotubes—one of the most promising nanomaterials developed to date—with the carbon-14 radioactive isotope, which enabled the nanotubes to be tracked and quantified as they were absorbed into living cells. Researchers used cancer cells called HeLa cells, and also measured nanotube uptake in an earthworm and an aquatic type of worm.

The findings were presented Sunday at the 231st American Chemical Society National Meeting in Atlanta. Co-authors of the presentation are graduate student Elijah Petersen and postdoctoral research assistant Qingguo Huang.

Carbon nanotubes were discovered in 1991, and hold great promise in several areas, including pharmacology and for hydrogen storage in fuel cells, Weber said. But despite their promise, a big problem is that it's not known how multi-walled carbon nanotubes will impact the living environment, Weber said.

"While everyone is concerned about this issue, there has been no really adequate way before this development to examine the extent to which they may get into human cells, and what will result if they do," Weber said. "Nobody has been able to do quantitative research on this because no method to measure them has existed until now. We were able to detect them, but had no way to determine how much was there."

In tagging the nanotubes with the isotope, researchers found that about 74 percent of the nanotubes added to a culture of cancer cells were assimilated by the cells after 15 minutes, and 89 percent of nanotubes assimilated after six hours, according to the paper. And the uptake was nearly irreversible, with only about 0.5 percent of the nanotubes releases from the cell after 12 hours.

It's important to understand if and how the multi-walled carbon nanotubes accumulate in living cells, because before the materials can become widely used in society scientists must understand if they'll pass through the food webs and possibly threaten the health of ecosystems and lead to uptake by humans, Petersen said.

"This approach has virtually limitless potential for facilitating important future investigations of the behaviors of carbon nanotubes in environmental and biomedical applications," Petersen said.

Source: University of Michigan

Explore further: Are fuel cells environmentally friendly? Not always

Related Stories

Are fuel cells environmentally friendly? Not always

July 15, 2015

Fuel cells are regarded as the technology of the future for both cars and household heating systems. As a result, they have a key role to play in the switch to renewable energies. But are fuel cells always more environmentally ...

Tiny wires could provide a big energy boost

July 7, 2015

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough power to transmit ...

Manipulating cell membranes using nanotubes

June 1, 2015

Japanese researchers have developed a targeted method for opening up cell membranes in order to deliver drugs to, or manipulate the genes of, individual cells.

Cotton fibres instead of carbon nanotubes

May 7, 2015

Plant-based cellulose nanofibres do not pose a short-term health risk, especially short fibres, shows a study conducted in the context of National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64). But ...

Recommended for you

First detection of lithium from an exploding star

July 29, 2015

The chemical element lithium has been found for the first time in material ejected by a nova. Observations of Nova Centauri 2013 made using telescopes at ESO's La Silla Observatory, and near Santiago in Chile, help to explain ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.