Quantum electronics: Two photons and chips

Jan 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons - light particles - would be a tremendous boon to quantum information technology.

Pairs of photons with properties that are mutually interdependent, owing to a quantum-mechanical effect called entanglement, are the basic currency of quantum-based information processing.

Entangled pairs can be used, for example, to implement quantum cryptography, an ultra-secure way of transmitting information, and quantum computing, which in principle offers much more computer power than today's conventional devices. But making entangled photons on demand is not easy.

Andrew Shields and colleagues report in last week’s Nature [Nature, 12 January, pp179-182] what appear to be entangled photons being emitted from tiny blobs, called quantum dots, of the semiconductor indium arsenide, a material commonly used in solid-state light-emitting devices.

The quantum dots emit pairs of photons when their electrons are boosted to a higher energy by laser light and then release this extra energy as light. By using a magnetic field to tweak the conditions under which the photons are emitted, the researchers were able to generate pairs that appear to be entangled in their polarization states — that is, the plane of polarization of one of the pair depends on that of the other, so that a measurement made on one of them determines the polarization of the other.

If this process can be more precisely controlled, a simple semiconductor light-emitting diode might be used as a compact, robust and reliable source of entangled pairs.

Source: Nature

Explore further: A 'movie' of ultrafast rotating molecules at a hundred billion per second

Related Stories

Recommended for you

To conduct, or to insulate? That is the question

Jul 02, 2015

A new study has discovered mysterious behaviour of a material that acts like an insulator in certain measurements, but simultaneously acts like a conductor in others. In an insulator, electrons are largely stuck in one place, ...

Soundproofing with quantum physics

Jul 02, 2015

Sebastian Huber and his colleagues show that the road from abstract theory to practical applications needn't always be very long. Their mechanical implementation of a quantum mechanical phenomenon could soon ...

Extreme lab at European X-ray laser XFEL is a go

Jul 02, 2015

The Helmholtz Senate has given the green light for the Association's involvement in the Helmholtz International Beamline (HIB), a new kind of experimentation station at the X-ray laser European XFEL in Hamburg, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.