Single molecule motor inspired by natural energy conversion

January 23, 2006
Single molecule motor inspired by natural energy conversion
The cycle of oxidation and reduction, causing soft/hard transitions within the molecule. The associated stretching and shrinking gives the mechanical energy. The forces are monitored by the tip of an Atomic Force Microscope, on top of the molecule. The bottom of the chain is fixed on a gold surface.

A single molecule working as the nano scale version of the steam engine: that’s the molecular motor developed by a group of UT scientists led by prof. Julius Vancso of the MESA+ Institute for Nanotechnology. Natural ‘motor molecules’, capable of converting chemical energy into movement, have been the source of inspiration for this new synthetic version: a polymer molecule that stretches and shrinks caused by redox reactions. The results appear on the cover of Macromolecular Rapid Communications of January 23.

In nature, some proteins are capable of converting chemical into mechanical energy, by burning ‘fuel molecules’. The synthetic version now presented is a polymer chain, fixed on a surface on one side. Fully stretched, this molecule is a few tens of nanometers long. A cyclic process can be started, in which parts of the chain alternately harden and soften. The result is an amount of mechanical energy, sufficient for driving future nano devices like pumps, valves and levers.

Just like in nature, redox reactions are the basis for the working principle of the engine: during reduction and oxidation, electrons are interchanged. To stimulate these reactions, iron is introduced within the polymer chain (PFS: polyferrocenydimethylsilane). This iron is alternately oxidized and reduced when the chain is put on a suitable voltage level. This cyclic process causes the soft/hard transitions and the shrinking and stretching of the chain. The researchers now use an atomic force microscope to be able to sense the forces and to get hold of the molecule on the top side. They estimate the efficiency of the conversion to be ten percent. Compared to conversion processes in nature: using photo synthesis, plants convert energy with an efficiency of 13 percent, and the estimated efficiency of the conversion of the chemical energy of food within the human body is about five percent.

A major additional advantage of the new molecular motor presented is that it can be positioned very accurately and controlled on a surface. In this way, it is possible to create a true array of engines and connect the nano devices to them. The distance between the motors can be kept very small. In light-driven nanomotors earlier presented, the minimum distance was limited by the wavelength of the light used, for example.

Source: University of Twente

Explore further: Cobalt-ligand catalyst successfully converts carboxylic acids and esters into alcohols

Related Stories

New approach for 'nanohoops' could energize future devices

October 12, 2015

When Ramesh Jasti began making tiny organic circular structures using carbon atoms, the idea was to improve carbon nanotubes being developed for use in electronics or optical devices. He quickly realized, however, that his ...

Plants keep one foot on the brakes

November 2, 2015

Pressing on the gas and the brakes at the same time hardly sounds like good driving technique, but Weizmann Institute scientists have discovered that plants drive some of their key processes in precisely such manner.

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

A blue, neptune-size exoplanet around a red dwarf star

November 25, 2015

A team of astronomers have used the LCOGT network to detect light scattered by tiny particles (called Rayleigh scattering), through the atmosphere of a Neptune-size transiting exoplanet. This suggests a blue sky on this world ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.