January 12, 2006

A programme for research on millimetre scale internal combustion engines is being jointly developed by Cambridge Combustion Research Centre and the Centre for Micro-Engineering and Nanotechnology at the University of Birmingham. This micro-engine project brings together novelties in fabrication, combustion, and micro-engine design with a close interaction of micro-fabrication and combustion expertise.

Most liquid hydrocarbon fuels hold over 300 times more energy per unit weight than a NiCad battery and 100 times more than a Li-ion battery. A micro-engine would have the potential to release the energy from the fuels and possibly replace batteries in portable devices.

It would not only last much longer than a battery of the same weight (about 20 times at 10% efficiency), but also requires little time to change its fuel capsule. As a highly compact energy source, micro-engines could find applications in medical devices, military equipment, PDAs, notebook computers, mobile phones, and even toys!

The original idea for making a micro-engine using Micro-Electro-Mechanical Systems (MEMS) technology was proposed by Alan Epstein and Stephen Senturia of Massachusetts Institute of Technology (MIT) in the mid-1990s. Research in Europe started at the University of Birmingham in 1999 and resulted in a patented fabrication process and several prototype micro-engines. The proposed collaboration project between the two Universities intends to produce a micro combustion engine, with platform of 5 x 15 x 3 mm in overall dimension and the expected indicated power output at 11.2 W at a speed of the order of 50,000 rpm.

One of the major problems with the micro-engines is that silicon-based components cannot withstand the high temperatures of combustion. A second barrier is to actually produce sustained combustion in the small dimensions, which are affected by heat transfer. The solution proposed by the investigators is to make micro components out of ceramic materials, and to operate the engine at high speeds using autoignition processes to overcome the heat transfer problem. The investigators are hopeful that the development of the process will allow micro-engines to be brought to the market.

Source: University of Cambridge

Explore further: Researchers develop new kind of internal combustion microengine

Related Stories

A giant Pac-Man to gobble up space debris

July 6, 2015

The Clean Space One Project has passed a milestone. The space cleanup satellite will deploy a conical net to capture the small SwissCube satellite before destroying it in the atmosphere. It's one of the solutions being tested ...

Tiny heat engine may be world's smallest

February 2, 2011

(PhysOrg.com) -- Steam engines, combustion engines, and diesel engines are all different types of heat engines, which operate by converting heat energy into mechanical work. Although heat engines have existed for a long time, ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.