The forgotten methane source

January 11, 2006
The forgotten methane source
A plant chamber used to investigate methane formation in plants -- in this example, in ryegrass (Lolium perenne). Image: Max Planck Institute for Nuclear Physics.

In the last few years, more and more research has focused on the biosphere; particularly, on how gases which influence the climate are exchanged between the biosphere and atmosphere. Researchers from the Max Planck Institute for Nuclear Physics have now carefully analysed which organic gases are emitted from plants. They made the surprising discovery that plants release methane, a greenhouse gas - and this goes against all previous assumptions.

Equally surprising was that methane formation is not hindered by the presence of oxygen. This discovery is important not just for plant researchers but also for understanding the connection between global warming and increased greenhouse gas production (Nature, January 12, 2006).

Methane is the greenhouse gas which has the second greatest effect on climate, after carbon dioxide. The concentration of methane in the atmosphere has almost tripled in the last 150 years. Methane is best known as natural gas, currently an important energy source. Nonetheless, only part of the methane uptake in the atmosphere is due to industrial activities connected to energy production and use. More important for the increase of methane in the atmosphere is the increase in so-called "biogenic" sources, e.g., rice cultivation or domestic ruminants related to the rise in the world's population. Nowadays, methane in the atmosphere in fact is largely of biogenic origin.

Until now, it has been assumed that biogenic methane is formed anaerobically, that is, via micro-organisms and in the absence of oxygen. In this way, acetate or hydrogen and carbon dioxide are transformed into methane; they themselves are created in the anaerobic decomposition of organic materials. The largest anoxic sources of methane are wetlands and rice fields, as well as the digestion of ruminants and termites, waste disposal sites, and the gas produced by sewage treatment plants. According to previous estimates, these sources make up two-thirds of the 600 million tonnes worldwide annual methane production.

Scientists from the Max Planck Institute for Nuclear Physics have now discovered that plants themselves produce methane and emit it into the atmosphere, even in completely normal, oxygen-rich surroundings. The researchers made the surprising discovery during an investigation of which gases are emitted by dead and fresh leaves. Then, in the laboratory and in the wild, the scientists looked at the release of gases from living plants like maize and ryegrass. In this investigation, it turned out that living plants let out some 10 to 1000 times more methane than dead plant material. The researchers then were able to show that the rate of methane production grew drastically when the plants were exposed to the sun.

Although the scientists have some first indications, it is still unclear what processes are responsible for the formation of methane in plants. The researchers from Heidelberg assume that there is an unknown, hidden reaction mechanism, which current knowledge about plants cannot explain - in other words, a new area of research for biochemistry and plant physiology.

In terms of total amount of production worldwide, the scientists' first guesses are between 60 and 240 million tonnes of methane per year. That means that about 10 to 30 percent of present annual methane production comes from plants. The largest portion of that - about two-thirds - originates from tropical areas, because that is where the most biomass is located. The evidence of direct methane emissions from plants also explains the unexpectedly high methane concentrations over tropical forests, measured only recently via satellite by a research group from the University of Heidelberg.

But why would such a seemingly obvious discovery only come about now, 20 years after hundreds of scientists around the globe started investigating the global methane cycle? "Methane could not really be created that way," says Dr. Frank Keppler. "Until now all the textbooks have said that biogenic methane can only be produced in the absence of oxygen. For that simple reason, nobody looked closely at this."

The fact is that, in order to determine the quantity of emissions, scientists indeed have to make very careful measurements. The researchers from Heidelberg conducted most of their experiments in methane-free air, in order to factor out the high natural background of methane. Furthermore they used isotope analysis to show beyond doubt that this was an undiscovered process of methane production. By "looking closely" - despite established opinion - they made a discovery that will require textbooks to have their passages about methane production rewritten.

Following up on this discovery, the scientists now will continue laboratory work, as well as field and remote sensing studies, to better quantify the strength of these methane emissions. A related exciting question is which role the biosphere has played in methane production in the history of the earth, and what kind of influence rising global temperatures and carbon dioxide concentration have on the production of methane from plants. Answers to these questions are important for understanding the feedback mechanisms between climate change and greenhouse gas production.

Source: Max-Planck-Gesellschaft

Explore further: Scientists grow high-quality graphene from tea tree extract

Related Stories

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

Boreal forests challenged by global change

August 20, 2015

Management of boreal forests needs greater attention from international policy, argued forestry experts from the International Institute for Applied Systems Analysis (IIASA), Natural Resources Canada, and the University of ...

Methane-powered tractor could cut farmers' costs, emissions

August 10, 2015

Luca Remmert's dream of running a self-sustainable farm is within sight. He produces energy from corn and grain near the northern Italian city of Turin and hopes in the not too distant future to run all of his eight tractors ...

Could deep-Earth microbes help us frack for oil?

August 3, 2015

On a muddy hill above a World War II ordnance plant that made material for atomic bombs, a fracking crew will drill thousands of feet underground in a search for life itself.

Reproducible research for biofuels and biogas

July 30, 2015

New research in the Open Access journal GigaScience presents a virtual package of data for biogas production, made reusable in a containerized form to allow scientists to better understand the production of biofuels.

Recommended for you

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.