Computer model explaines alluring plant shapes

January 24, 2006
Phyllotaxis

Flowers are innately beautiful to the human eye, but how does a sunflower achieve its stunning disc of intersecting spirals or a daisy its delicate symmetry?

That was the question tackled by University of Calgary computer scientists, who have answered one of biology's enduring questions with an animated model that provides the most detailed simulation of how plants grow into recognizable shapes.

In the article "A plausible model of phyllotaxis" published in this week's edition of the Proceedings of the National Academy of Sciences, University of Calgary PhD student Richard Smith and Computer Science professor Dr. Przemyslaw Prusinkiewicz, together with their collaborators from the Institute of Plant Science in Berne, Switzerland (Soazig Guyomarc'h, Therese Mandel, Didier Reinhardt, and professor Cris Kuhlemeier), present the first model to show how plants achieve phyllotaxis – the unique arrangement of lateral organs around a central axis that results in the spiral patterns seen in most plants – beginning at the molecular-level.

"Biologists have many theories about why phyllotaxis exists but have always wondered how it happens," said Smith. "This model is exciting because it proposes a mechanism that works and can be used to try and prove some of the biological theories about the growth process."

Smith and Prusinkiewicz worked with the botanists in Switzerland to create a three-dimensional simulation of plant growth at the microscopic scale, simulating cell division and showing how concentrations of the fundamental plant growth hormone auxin appear at regularly-spaced intervals. This creates the striking spiral patterns of seeds observed in sunflowers, daisies, and many other plants. Other patterns, such as branching at right angles observed in lilac branching, can be also be simulated using different parameter values.

The subject of the study was a plant called Arabidopsis, a small white-flowered plant that is to the world of botany what the fruit fly and white mouse are to zoology.

The scientists believe their model will enhance biological experiments by providing a tool botanists can use to complement and interpret their traditional laboratory experiments. It also promises to lead to accurate models of how other organisms, including animals, develop from primordial stem cells.

"This was a great example of the synergy you can have between biology and computer science and how the tools of one discipline can be used to answer questions in another," said Prusinkiewicz, who specializes in computer simulations and visualizations in plant biology. "

Source: University of Calgary

Explore further: Soil will absorb less atmospheric carbon than expected this century

Related Stories

Breakthrough in understanding of how things deform

September 21, 2016

Every material can bend and break. Through nearly a century's worth of research, scientists have had a pretty good understanding of how and why. But, according to new findings from Drexel University materials science and ...

Computing the ocean's true colors

September 16, 2016

When she was 17, Stephanie Dutkiewicz set sail from her native South Africa to the Caribbean islands. Throughout a three-month journey, she noticed that the color of the ocean shifted from place to place, but it wasn't until ...

Calculating the financial risks of renewable energy

September 15, 2016

For investors, deciding whether to invest money into renewable-energy projects can be difficult. The issue is volatility: Wind-powered energy production, for instance, changes annually—and even weekly or daily—which creates ...

Recommended for you

Creating antimatter via lasers?

September 27, 2016

Dramatic advances in laser technologies are enabling novel studies to explore laser-matter interactions at ultrahigh intensity. By focusing high-power laser pulses, electric fields (of orders of magnitude greater than found ...

Quantum computing advances with control of entanglement

September 27, 2016

When the quantum computer was imagined 30 years ago, it was revered for its potential to quickly and accurately complete practical tasks often considered impossible for mere humans and for conventional computers. But, there ...

Thirsty megacities poisoning rural groundwater: study

September 27, 2016

A massive drawdown of water beneath delta-based megacities across the world may be pulling surface pollution deeper into the ground, risking contamination and health problems for local populations, a new study said Tuesday.

Cosmic dust demystified

September 27, 2016

The solar system is a dusty environment, with trillions of cosmic dust particles left behind by comets and asteroids that orbit the sun. All this dust forms a relatively dense cloud through which the Earth travels, sweeping ...

Outrageous heads led to outrageously large dinosaurs

September 27, 2016

Tyrannosaurus rex and other large meat-eating theropods were the biggest baddies on the prehistoric block, and ornaments on their heads could help us figure out why. New research from North Carolina State University shows ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.