Tracking Nanomaterials In Vivo

Dec 23, 2005

Researchers at Northwestern University have been developing a toolbox of synthetic amino acids (related to building blocks of proteins) that assemble themselves into complex structures that may prove useful in drug delivery and tissue engineering applications. Now, that same research team has devised a noninvasive method of imaging these nanostructured materials within the body, providing a way of tracking the fate of these materials in a living organism.

Samuel Stupp, Ph.D., and his colleagues have been creating complex, self-assembled, nanoscale materials that can serve as scaffolds for tissue regeneration following surgery or injury, and as targeted, multifunctional drug delivery devices. Once these materials have served their purpose, the body would degrade them slowly and gradually eliminate them, but tracking such a process would be difficult because of the similarity of these materials to those found in the body.

To provide a handle on how the body handles these materials, Dr. Stupp and his collaborators teamed with Thomas Meade, Ph.D., also at Northwestern, to create another synthetic amino acid that can bind strongly to gadolinium ions. Other compounds containing gadolinium ions are employed by radiologists today to enhance images obtained using magnetic resonance imaging (MRI).

When these gadolinium-binding amino acids were incorporated into a variety of different self-assembling nanostructures, they were readily visible in images obtained using MRI. By studying various nanostructures, the investigators were able to determine how to maximize the MRI signal with a minimum amount of gadolinium, which can be toxic in large amounts. Dr. Stupp and his team are now using this gadolinium-containing amino acid to study degradation and migration of their self-assembled nanostructures in vivo.

This work is detailed in a paper titled, “Magnetic resonance imaging of self-assembled biomaterial scaffolds,” which appeared in the journal Bioconjugate Chemistry. An abstract of this paper is available through PubMed. (View abstract)

Source: National Cancer Institute

Explore further: New electronic stent could provide feedback and therapy—then dissolve

Related Stories

Recommended for you

Non-aqueous solvent supports DNA nanotechnology

17 hours ago

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

Nanosilver and the future of antibiotics

18 hours ago

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.