MIT researchers close in on bionic speed

November 7, 2005
MIT researchers close in on bionic speed

Robots, both large and micro, can potentially go wherever it's too hot, cold, dangerous, small or remote for people to perform any number of important tasks, from repairing leaking water mains to stitching blood vessels together.
Now MIT researchers, led by Professor Sidney Yip, have proposed a new theory that might eliminate one obstacle to those goals - the limited speed and control of the "artificial muscles" that perform such tasks.

Image: Here, a soliton (blob with red and blue stripes) moves along a conducting polymer chain (aqua and yellow for hydrogen and carbon). The soliton blob causes a localized bend in the chain. The traditional way to make polymer actuate is to dope the material with an ion such as sodium, represented by the red dot. Image courtesy / Yip lab

Currently, robotic muscles move 100 times slower than ours. But engineers using the Yip lab's new theory could boost those speeds - making robotic muscles 1,000 times faster than human muscles - with virtually no extra energy demands and the added bonus of a simpler design. This study appears in the Nov. 4 issue of the journal Physical Review Letters.

In this case, a robotic muscle refers to a device that can be activated to perform a task, like a sprinkler activated by pulling a fire alarm lever, explains Yip, a professor of nuclear engineering and materials science and engineering.

In the past few years, engineers have made the artificial muscles that actuate, or drive, robotic devices from conjugated polymers. "Conjugated polymers are also called conducting polymers because they can carry an electric current, just like a metal wire," says Xi Lin, a postdoctoral associate in Yip's lab. (Conventional polymers like rubber and plastic are insulators and do not conduct electricity.)

Conjugated polymers can actuate on command if charges can be sent to specific locations in the polymer chain in the form of "solitons" (charge density waves). A soliton, short for solitary wave, is "like an ocean wave that can travel long distances without breaking up," Yip adds. (See figures.) Solitons are highly mobile charge carriers that exist because of the special nature (the one-dimensional chain character) of the polymer.

MIT researchers close in on bionic speed


Image: New MIT research has suggested another way to make polymer actuate, shown here. The new method is to shine light of a specific frequency (hn), on the conducting polymer. The polymer in this image is a chain (neutral charge, green) that is naturally curved before exposure. The effect of light (hn frequency) is to create positive charges (red) in a localized area. The positive charges enhance the chemical bonding between the polymer’s units and straighten out the curved chain in that area. (This straightening occurs where the red and blue striped lobe appeared in image above. The lobe can move along the polymer chain rapidly.)

Scientists already knew that solitons enabled the conducting polymers to conduct electricity. Lin's work attempts to explain how these materials can activate devices. This study is useful because until now, scientists, hampered by not knowing the mechanism, have been making conducting polymers in a roundabout way, by bathing (doping) the materials with ions that expand the volume of the polymer. That expansion was thought to give the polymers their strength, but it also makes them heavy and slow.

Lin discovered that adding the ions is unnecessary, because theoretically, shining a light of a particular frequency on the conducting polymer can activate the soliton. Without the extra weight of the added ions, the polymers could bend and flex much more quickly. And that rapid-fire motion gives rise to the high-speed actuation, that is, the ability to activate a device.

To arrive at these conclusions, Lin worked from fundamental principles to understand the physical mechanisms governing conjugated polymers, rather than using experimental data to develop hypotheses about how they worked. He started with Schrödinger's equation, a hallmark of quantum mechanics that describes how a single electron behaves (its wave function). But solving the problem of how a long chain of electrons behaves was another matter, requiring long and complex analyses.

This research was funded by Honda R&D Co. and the Defense Advanced Research Projects Agency/Office of Naval Research. Yip and Lin's collaborators on the work are Professor Ju Li at Ohio State University and Professor Elisabeth Smela at the University of Maryland.

Source: MIT

Explore further: Origins of life: New model may explain emergence of self-replication on early Earth

Related Stories

Just say 'No' to drugs—in water

July 30, 2015

Remember the science fair? For some of us it was an exciting time of creative experimentation. For others it was a time of botched and badly displayed data. For 16-year-old Maria Elena Grimmett, it's a blast. And she isn't ...

Making polymers from a greenhouse gas

July 28, 2015

A future where power plants feed their carbon dioxide directly into an adjacent production facility instead of spewing it up a chimney and into the atmosphere is definitely possible, because CO2 isn't just an undesirable ...

The mystery of the instant noodle chromosomes

July 23, 2015

A group of researchers from the Lomonosov Moscow State University tried to address one of the least understood issues in the modern molecular biology, namely, how do strands of DNA pack themselves into the cell nucleus. Scientists ...

Finding the origins of life in a drying puddle (w/ Video)

July 20, 2015

Anyone who's ever noticed a water puddle drying in the sun has seen an environment that may have driven the type of chemical reactions that scientists believe were critical to the formation of life on the early Earth.

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.