Shark skin saves naval industry money

July 15, 2005

Covering ship hulls with artificial shark skin could help ships sailing smoothly. The growth of marine organisms such as barnacles on ship hulls is a major cause of increased energy costs in the naval industry. Shark skin offers a structural design that prevents this so called 'bio-fouling'.

Ralph Liedert from the University of Applied Sciences, Bremen, Germany, is presenting his work on the application of artificial shark skin in a new anti-fouling strategy at the Society for Experimental Biology Annual Main Meeting in Barcelona.

Shark skin comprises scales that can flex individually from each other. Liedert produced a synthetic shark skin of elastic silicone, which has a significantly decreased contact surface.

This reduced contact surface makes it harder for barnacles to attach, and reduces fouling by 67%. When applied to the ship hull, this artificial surface enables ships to 'self-clean', and a speed of 4-5 knots would remove all organisms attached with little adhesion.

Until recently, paints containing a biocide were used to prevent growth on submerged surfaces, but these were banned because of the the toxic effect of the highly toxic and unspecific biocide component on marine life.

As barnacles, mussels and algae cause up to 15% increase in the drag resistence of ships, this research is providing an alternative anti-fouling strategy of great importance.

Source: Society for Experimental Biology

Explore further: New hull coatings for Navy ships cut fuel use, protect environment (w/Video)

Related Stories

Shark attacks are so unlikely, but so fascinating

April 9, 2015

Sharks are incredibly unlikely to bite you. They're even less likely to kill you. However, we remain fascinated with their ability – and occasional proclivity – to do just that. With so many things more likely to harm ...

Hey, bacteria, get off of my boat!

October 31, 2011

Submerge it and they will come. Opportunistic seaweed, barnacles, and bacterial films can quickly befoul almost any underwater surface, but researchers are now using advances in nanotechnology and materials science to design ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.