How Your Garden Grows

May 25, 2005
How Your Garden Grows

Stumped scientists figure out plant growth mechanism

Just how does your garden grow? Plant scientists have long pondered the same question. For decades, the plant science community has known that auxins--a class of plant growth hormones--control many aspects of plant growth and development, including cell enlargement, formation of buds, roots, flowers, and fruit, and autumnal loss of leaves.

Image: Plant growth hormones, known as auxins, influence a variety of plant processes and are produced in growth regions throughout the plant (red dots). Researchers have worked out the series of molecular events the hormone uses to make plants grow. Credit: Nicolle Rager Fuller, NSF

Exactly how auxins do all that has been a thorny uncertainty, but now the molecular steps in the growth process have been worked out.

In the May 26 issue of the journal Nature, Mark Estelle and colleagues at Indiana University, Bloomington, show that to do its job, auxin must first bind with a protein called TIR1. When it's time to grow, the auxin-TIR1 complex signals for the destruction of another protein that puts the brakes on plant growth. With the brakes off, growth genes become active, and the plant gets a boost.

"This long-sought after discovery represents an important advance in our understanding of fundamental biological processes," says Jane Silverthorne, program director at the National Science Foundation, which supported this research. "This advance in basic plant biology could also have important applications to developing improved crops."

Auxins and synthetic replicas are widely used commercially to produce more vigorous growth, promote root formation in plants not easily propagated by stem cuttings, control flowering and fruiting, retard fruit drop, and to produce seedless varieties of some fruit like tomatoes. As auxins are found in all members of the plant kingdom, this breakthrough will not only allow researchers to better understand plant growth and development signals, it may also lead to improved cultivation practices.

The research was also supported by the National Institutes of Health and the U.S. Department of Energy.

Source: NSF

Explore further: Plant regulatory network simulations reveal a mystery in cytokinin patterning

Related Stories

Seaweed extract benefits petunia, tomato transplants

October 28, 2015

Seaweed extracts are used widely in agriculture and horticulture production systems. Benefits of the extracts can include early seed germination and establishment, improved crop performance and yield, increased resistance ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

Four pre-Inca tombs found in Peru's Lima

November 27, 2015

Archaeologists in Peru have found four tombs that are more than 1,000 years old in a pyramid-shaped cemetery that now sits in the middle of a residential neighborhood in Lima, experts said.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.