How Your Garden Grows

May 25, 2005
How Your Garden Grows

Stumped scientists figure out plant growth mechanism

Just how does your garden grow? Plant scientists have long pondered the same question. For decades, the plant science community has known that auxins--a class of plant growth hormones--control many aspects of plant growth and development, including cell enlargement, formation of buds, roots, flowers, and fruit, and autumnal loss of leaves.

Image: Plant growth hormones, known as auxins, influence a variety of plant processes and are produced in growth regions throughout the plant (red dots). Researchers have worked out the series of molecular events the hormone uses to make plants grow. Credit: Nicolle Rager Fuller, NSF

Exactly how auxins do all that has been a thorny uncertainty, but now the molecular steps in the growth process have been worked out.

In the May 26 issue of the journal Nature, Mark Estelle and colleagues at Indiana University, Bloomington, show that to do its job, auxin must first bind with a protein called TIR1. When it's time to grow, the auxin-TIR1 complex signals for the destruction of another protein that puts the brakes on plant growth. With the brakes off, growth genes become active, and the plant gets a boost.

"This long-sought after discovery represents an important advance in our understanding of fundamental biological processes," says Jane Silverthorne, program director at the National Science Foundation, which supported this research. "This advance in basic plant biology could also have important applications to developing improved crops."

Auxins and synthetic replicas are widely used commercially to produce more vigorous growth, promote root formation in plants not easily propagated by stem cuttings, control flowering and fruiting, retard fruit drop, and to produce seedless varieties of some fruit like tomatoes. As auxins are found in all members of the plant kingdom, this breakthrough will not only allow researchers to better understand plant growth and development signals, it may also lead to improved cultivation practices.

The research was also supported by the National Institutes of Health and the U.S. Department of Energy.

Source: NSF

Explore further: Rooting about with circadian rhythms

Related Stories

Rooting about with circadian rhythms

July 9, 2015

The circadian clock drives our physical, mental and behavioural changes. In fact most living things respond to the solar and lunar cycle – day and night. And plants are no different. But scientists at The University of ...

Plant fertility—how hormones get around

May 26, 2015

Researchers at Tokyo Institute of Technology have identified a transporter protein at the heart of a number of plant processes associated with fertility and possibly aging.

Sugar responsible for shoot branching in plants

April 7, 2014

(Phys.org) —A University of Queensland study has overturned the long-held belief that plant hormones control the shape of plant growth, and shown instead that this process starts with sugar.

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.