Molecular breakthrough for plastic electronics

April 12, 2005

The potential applications for flexible plastic electronics are enormous -- from electronic books to radio frequency identification (RFID) tags to electronics for cell phones, personal digital assistants (PDAs) and laptop computers -- but certain technological hurdles must be overcome before we see such widespread use. Now a Northwestern University team of materials chemists report a breakthrough in the race to find the right materials for producing cost-effective, high-performance plastic electronics. The findings appear in the Proceedings of the National Academy of Sciences (PNAS).

The team, led by Tobin J. Marks, Vladimir N. Ipatieff Professor of Chemistry and professor of materials science and engineering, has designed organic molecules that self assemble into an ultra-thin layer (less than six nanometers thick) for use in the dielectric, or nonconducting, component of a transistor. Their tailored molecular components reduce both operating voltage and power consumption in organic thin-film transistor (OTFT) structures, making low-power consumption OTFTs a reality. "This means having plastic electronics the size of a pen battery -- rather than an automobile battery -- power your cell phone," said Marks. "And, instead of being carved out of silicon, transistor structures would be printed in a fashion similar to that of newspapers, but with organic molecules as the ink and plastic as the paper. Much as the New York Times prints a different edition of the newspaper every day, we could flexibly print a wide variety of electronic devices quickly, easily and cheaply." Examples include RFID tags for labeling items in a store or tracking them in a factory. "You could walk up to a cash register at the grocery store," said Marks, "and it would automatically sense what each item costs and whether or not it has passed its expiration date -- all in one step." In their paper, Marks and fellow authors Antonio Facchetti, research professor of chemistry, and Myung-Han Yoon, a graduate student in chemistry, showed that their new nanodielectric multilayers have very high capacitances (the ability to store an electrical charge) and excellent insulating properties and are compatible with a variety of organic semiconductors and substrate materials, the other key components of a transistor. Source: Northwestern University

Explore further: Reinterpreting the fossil record on jaws

Related Stories

Reinterpreting the fossil record on jaws

August 18, 2016

Scientists use the fossil record to make judgments on the physiology and behavior of species. But are those interpretations correct? New research from a team of researchers led by Matthew Ravosa, professor of biology and ...

Butterflies' wing patterns change with the seasons

July 7, 2016

Tropical butterflies adapt to their environment to improve their chances of survival. The changes are triggered by hormone signals that transmit information about temperature to the butterflies' tissues. Biologist Ana Rita ...

Princeton team explores 3D-printed quantum dot LEDs

November 6, 2014

Some of the most important developments marking advances in the 3D printing industry are in the realm of material science, notes 3d Printing Industry. "The more materials we can print, the more useful the technology becomes." ...

Recommended for you

Rocky planet found orbiting habitable zone of nearest star

August 24, 2016

An international team of astronomers including Carnegie's Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool ...

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.